Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Перевірка наявності автокореляції Критерій Дарбіна – Уотсона






 

Для перевірки наявності автокореляції залишків найчастіше застосовується критерій Дарбіна – Уотсона (DW):

Він може набувати значень з проміжку [0, 4]: .

Якщо залишки є випадковими величинами, нормально розподіленими, а не автокорельованими, то значення містяться поблизу 2. При до­датній автокореляції < 2, при від’ємній – > 2. Фактичні значення критерію порівнюються з критичними (табличними) при різному числі спостережень n і числі незалежних змінних m для вибраного рівня значущості a. Табличні значення мають нижню межу і верхню – .

Коли < , то залишки мають автокореляцію. Якщо > , то приймається гіпотеза про відсутність автокореляції. Коли < < , то конкретних висновків зробити не можна: необхідно далі провадити дослідження, беручи більшу сукупність спостережень. Зауважимо, що цей критерій призначений для малих вибіркових сукупностей.

Вибірковий розподіл значень критерію Дарбіна – Уотсона залежить від емпіричних спостережень пояснювальних змінних і навіть якщо взяти до уваги цю обставину, можна стверджувати: параметр r для генеральної сукупності має тісний зв’язок з критерієм . Якщо , то значення = 0, при = 2 і при значення критерію = 4. Наведені співвідношення показують, що існують області, в яких застосування критерію Дарбіна – Уотсона не може дати певних результатів, про що вже було сказано. Верхні та нижні межі критерію DW визначають межі цієї області для різних розмірів вибірки, заданого числа пояснювальних змінних та певного рівня значущості.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал