Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Параметричний тест Гольдфельда-Квандта
Коли сукупність спостережень невелика, то розглянутий метод не застосовний. У такому разі Гольдфельд і Квандт запропонували розглянути випадок, коли , тобто дисперсія залишків зростає пропорційно до квадрата однієї з незалежних змінних моделі:
Для виявлення наявності гетероскедастичності згадані вчені склали параметричний тест, в якому потрібно виконати такі кроки. Крок 1. Упорядкувати спостереження відповідно до величини елементів вектора . Крок 2. Відкинути спостережень, які містяться в центрі вектора. Згідно з експериментальними розрахунками автори знайшли оптимальні співвідношення між параметрами і , де – кількість елементів вектора : Крок 3. Побудувати дві економетричні моделі на основі 1МНК за двома утвореними сукупностями спостережень за умови, що перевищує кількість змінних m. Крок 4. Знайти суму квадратів залишків за першою (1) і другою (2) моделями і : , де – залишки за моделлю (1); , де – залишки за моделлю (2). Крок 7. Обчислити критерій який в разі виконання гіпотези про гомоскедастичність відповідатиме -розподілу з , ступенями свободи. Це означає, що обчислене значення порівнюється з табличним значенням F-критерію для ступенів свободи і і вибраного рівня довіри. Якщо , то гетероскедастичність відсутня.
|