Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Физические свойства.






1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.

2. Отсюда происходит и ее название (от лат. «целлула» – клетка).

3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.

4. Волокна хлопка содержат до 98 % целлюлозы.

5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.

6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.

7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.

8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Строение целлюлозы:

1) целлюлоза, как и крахмал, является природным полимером;

2) эти вещества имеют даже одинаковые по составу структурные звенья – остатки молекул глюкозы, одну и ту же молекулярную формулу (С6H10O5)n;

3) значение n у целлюлозы обычно выше, чем у крахмала: средняя молекулярная масса ее достигает нескольких миллионов;

4) основное различие между крахмалом и целлюлозой – в структуре их молекул.

75. Под специфичностью ферментов понимают способность каждого из них катализировать одну или несколько близких по природе хими-ческих реакций. Это одно из важнейших биологических явлений, без которого невозможен упорядоченный обмен веществ в живом организме, а следовательно, и сама жизнь.

Специфичность у разных ферментов выражена в неодинаковой степени. Различают следующие типы специфичности.

1. А б с о л ю т н а я с п е ц и ф и ч н о с т ь. При этом типе специфичности фермент катализирует превращение только одного субстрата. Фермент каталаза катализирует расщепление пероксида водорода на воду и кислород; ее действие ограничивается только этим субстратом.

2. Г р у п п о в а я с п е ц и ф и ч н о с т ь. Основным признаком для ферментов этого типа специфичности служит характер разрушаемой или создаваемой связи в близких по строению группах веществ. К ферментам с групповой специфичностью относятся липазы, катализирующие гидролиз сложных эфиров глицерина и карбоновых кислот; фосфатазы, действующие на эфиры фосфорной кислоты; пептидгидролазы, катализирующие гидролиз пептидных связей в белках и пептидах и др.

3. С т е р е о х и м и ч е с к а я с п е ц и ф и ч н о с т ь. Ферменты этого типа специфичности действуют на определенный изомер одного и того же вещества: D- или L-, a- или b-, транс- или цис-. Пептидгидролазы действуют только на пептиды, образованные аминокислотами L-ряда.

Факторы, влияющие на активность ферментов

Влияние температуры Температура, при которой наблюдается максимальная активность ферментов, называется оптимальной. Для большинства ферментов оптимальной температурой является температура от +35С — +45С. Если фермент поместить в условия, ниже оптимальной температуры, будет происходить снижение его активности, такое состояние называется обратимой инактивацией фермента, т.к. если вновь поднять температуру до оптимальной, активность фермента возобновится.

Влияние рН среды рН среды влияет на заряд молекулы фермента, а значит на работу АЦ. Оптимальная рН для каждого фермента своя, но для большинства ферментов от 4 до 7.

Влияние концентрации фермента и субстрата

Чем больше фермента, тем скорость реакции выше. То же самое можно сказать о влиянии концентрации субстрата. Но теоретически для каждого фермента имеется насыщающая концентрация субстрата, при которой все АЦ фермента будут заняты субстратом и реакция будет на определенном уровне (максимальном), сколько бы субстрата мы не добавляли.

Влияние веществ-регуляторов Регуляторы можно разделить на активаторы и ингибиторы. Как те, так и другие делятся на специфические и неспецифические.

К специфическим активаторам относятся соли желчных кислот (для липазы поджелудочной железы); соляная кислота (для пепсина); ионы хлора (для альфа-амилазы). К неспецифическим активаторам относятся ионы магния, которые активируют фосфатазы и киназы. К специфическим ингибиторам относятся концевые пептиды в проферментах.

Конкурентное ингибирование – это явление, когда наблюдается структурное сходство между субстратом и ингибитором, они конкурируют за связь с АЦ фермента. Если ингибитора больше, чем субстрата, то образуется комплекс фермент-ингибитор. Если добавить субстрат, то он вытеснит ингибитор.

Неконкурентное ингибирование – это явление, когда между субстратом и ингибитором нет структурного сходства. Субстрат и ингибитор могут одновременно связаться с ферментом. При этом образуется комплекс фермент-субстрат-ингибитор.

Аллостерическая регуляция активности ферментов У некоторых ферментов, имеющих четвертичную структуру, кроме АЦ имеется аллостерический центр. Если с ним связывается аллостерический активатор, то активность фермента увеличивается. Если с аллостерическим центром связывается аллостерический ингибитор, активность фермента снижается.

76. Стероиды (от холестерин) — вещества животного или, реже, растительного происхождения, обладающие высокой биологической активностью. Стероиды образуются в природе из изопреноидных предшественников. Особенностью строения стероидов является наличие конденсированной тетрациклической системы гонана (прежнее название — стеран).

В регуляции обмена веществ и некоторых физиологических функций организма участвуют стероидные гормоны. Ряд синтетических гормонов, например, преднизолон, по действию на организм превосходят природные аналоги. В группу стероидов входят содержащиеся в организме человека стероидный спирт холестерин, а также желчные кислоты — соединения, имеющие в боковой цепи карбоксильную группу, например, холевая кислота.

Стероиды включают в себя стерты (стеролы), сапонины, стероидные алкалоиды, стероидные гормоны, желчные кислоты, желчные спирты, гликозиды сердечные, витамин D.

77. Аденозинтрифосфа́ т (сокр. АТФ, англ. АТР) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы.

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.

Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот. Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов.

АДФ (ADF) - Нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты, обычно в комплексе с ионами магния, образуется в результате фосфорилирования АМФ или дефосфорилирования АТФ.???

78. В природе существуют как простые, так и сложные ферменты. Первые целиком представлены полипептидными цепями и при гидролизе распадаются исключительно на аминокислоты. Такими ферментами (простые белки) являются гидролитические ферменты, в частности пепсин, трипсин, папаин, уреаза, лизоцим, рибонуклеаза, фосфатаза и др. Большинство природных ферментов относится к классу сложных белков, содержащих, помимо полипептидных цепей, какой-либо небелковый компонент (кофактор), присутствие которого является абсолютно необходимым для каталитической активности. Кофакторы могут иметь различную химическую природу и различаться по прочности связи с полипептидной цепью. Все ферменты можно условно разделить на две группы: однокомпонентные и двухкомпонентные. Однокомпонентные ферменты состоят только из белка. Примерами однокомпонентных ферментов могут служить пепсин и папаин.Двухкомпонентные ферменты состоят из белковой части, или апофермента, и небелковой, или кофермента. Примерами двухкомпонентных ферментов являются: каталаза.Биологическая активность проявляется у двухкомпонентного фермента лишь в случае присоединения кофермента к белку, по отдельности каждая из частей двухкомпонентного фермента ею не обладает.Каждый фермент имеет свой активный центр. Активным центром однокомпонентного фермента являются некоторые химические группы белковой молекулы. В активный центр двухкомпонентного фермента входит кофермент.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал