Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Точечные оценки параметров распределенийСтр 1 из 5Следующая ⇒
Практическая часть Теория для выполнения практической части Точечные оценки параметров распределений Если – выборка из генеральной совокупности случайной величины , то оценкой параметра q называется произвольная функция от выборочных значений[1] . Используемые на практике оценки – не совсем произвольные функции: они обладают рядом свойств, которые обеспечивают в некотором смысле оптимальное извлечение информации из выборок. Обсудим эти свойства более подробно. Точечные оценки математического ожидания Значение оценки меняется от выборки к выборке и, значит, есть случайная величина. Значения этой случайной величины в большинстве экспериментов должны быть близки к значению оцениваемого параметра. Этого можно достигнуть, если для любого значения п математическое ожидание величины равно истинному (теоретическому) значению параметра . Оценки , удовлетворяющие условию , называются несмещенными. Несмещенность оценки означает, что эта оценка не несет в себе систематической ошибки. Еще одно важное свойство, которым должны обладать оценки, – состоятельность. Оценка называется состоятельной оценкой параметра q, если для любого справедливо . Поясним смысл последнего равенства. Пусть – как угодно малое положительное число. Тогда с ростом п увеличивается вероятность того, что значение оценки отличается от истинного значения параметра q не более чем на величину e. Но нет гарантии, что , однако утверждается, что начиная с некоторого п событие становится практически достоверным. Точечные оценки дисперсии Для дисперсии случайной величины x можно предложить следующую оценку: , где – выборочное среднее. Доказано, что эта оценка состоятельная, но смещенная. В качестве состоятельной несмещенной оценки дисперсии используют величину . Именно несмещенностью оценки объясняется ее более частое использование в качестве оценки величины D[x]. Заметим, что Mathcad предлагает в качестве оценки дисперсии величину , а не : функция var(x) вычисляет величину , где mean(x) – выборочное среднее . Точечные оценки коэффициента корреляции Пусть – выборка объема п из двумерной случайной величины . Точечной оценкой коэффициента корреляции является выборочный коэффициент корреляции , который вычисляется следующим образом. Сначала находятся выборочные средние . Затем рассчитываются величины: – корреляционный момент или ковариация; – точечные оценки дисперсий, и находится коэффициент корреляции .
|