Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Уравнение спирали Архимеда
Пусть по лучу, вращающемуся около полюса О с постоянной угловой скоростью w, движется точка М с постоянной скоростью v. Тогда точка М опишет линию, которая называется спиралью Архимеда. Для того чтобы вывести уравнение этой линии, введем полярную систему координат, центр которой совпадает с точкой О, тогда расстояние от точки М до полюса О r=ОМ пропорционально углу j (рис 10а). Это означает, что уравнение спирали Архимеда можно записать в виде: r=kj. В предыдущих главах мы строили опорные точки графика спирали Архимеда, руководствуясь именно этим свойством спирали – при изменении угла на величину nΔ φ длину радиуса-вектора мы меняли на nΔ r.
Из уравнения видно, что если j=2p (точка М совершила полный оборот вокруг центра О), то r1=k× 2p, после второго оборота r2=k× 4p=2r1, после третьего r3=k× 6p=3r1 и т.д. Величина k× 2p= а называется шагом спирали. Шаг спирали - это величина смещения вдоль луча, соответствующее повороту луча на 2p. Так как шаг спирали имеет ясный физический смысл, уравнение спирали Архимеда принято задавать в терминах именно шага спирали: . Коэффициент пропорциональности k и шаг спирали а связаны соотношением: и а=2pk.
|