Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Генетическая инженерия и область ее применения в биотехнологии.
Достижения научно- технического прогресса способствовали развитию новых биологических технологий создания диагностических, лечебных и профилактических препаратов, решению проблем сбалансированности питания, экологических проблем. Основные принципы биотехнологии- ферментация, культивирование микроорганизмов, растительных и животных клеток, генная и клеточная инженерия. Генетическая инженерия является сердцевиной биотехнологии. Она, по существу, сводится к генетической рекомбинации, т.е. к обмену генами между двумя хромосомами. Метод рекомбинации in vitro или генетической инженерии заключается: а) в выделении или синтезе ДНК из отличающихся друг от друга организмов или клеток; б) получении гибридных молекул ДНК; в) введении рекомбинантных (гибридных) молекул в живые клетки; г) создании условий для экспрессии и секреции продуктов, кодируемых генами. Экспрессируемый ген в виде рекомбинантной ДНК (плазмида, фаг, вирусная ДНК) встраивается в бактериальную или животную клетку, которая приобретает новое свойство – продуцировать несвойственное этой клетке вещество, кодируемое экспрессируемым геном. Методом генетической инженерии созданы сотни препаратов медицинского и ветеринарного назначения, получены рекомбинантные штаммы-суперпродуценты, многие из которых нашли практическое применение. Уже применяются в медицине полученные методом генетической инженерии вакцины против гепатита В, интерлейкины, инсулин, гормоны роста, интерфероны, фактор некроза опухолей, пептиды тимуса, миелопептиды, эритропоэтин, антигены ВИЧ. Разработаны и в ближайшие годы будут использованы в практике генно-инженерные вакцины против малярии, ВИЧ-инфекции, сифилиса, клещевого энцефалита, холеры, бруцеллеза, гриппа, бешенства идр. На основе достижений генетики разработаны высокоточные методы диагностики и идентификации микроорганизмов - определение плазмидного профиля, рестрикционный анализ, ДНК- гибридизация, полимеразная цепная реакция (ПЦР), секвенирование и мн.др. Методы основаны на использовании ряда специфических ферментов - рестриктаз (ферментов, расщепляющих ДНК в специфических участках), лигаз или синтетаз (обеспечивают соединение двух молекул), в частности ДНК- лигаз (получение рекомбинантных молекул ДНК), полимераз (ДНК- зависимая ДНК- полимераза обеспечивает ПЦР- многократное реплицирование специфического участка нуклеотидной последовательности). Плазмиды (F- плазмиды) и вирусы (бактериофаги) используют в генной инженерии в качестве векторов для переноса генетического материала (генов). Метод клонирования заключается в том, что выделенный фрагмент (ген) вводится в состав плазмиды или другой самореплицирующейся системы и накапливается в размножающихся клетках. Практический вариант использования: микроорганизмы- продуценты биологически активных веществ (в том числе вакцин). Гибридомную технологию используют для получения моноклональных антител (МКА). Кроме клонирования для получения генов используют секвенирование и химический синтез. С помощью генно- инженерных методов получают вакцины, антигены, диагностикумы, гормоны, иммуномодуляторы. Одним из крупных разделов биотехнологии является производство антибиотиков и различных химиотерапевтических препаратов антибактериального действия.
|