Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
V. Политическое деление 74 страница
В природе отлагается в осадочных соленосных толщах вместе с галитом, карналлитом, образуя иногда крупные толщи пром. месторождений калийных солей. Встречается также в возгонах вулканов. Прозрачные кристаллы С. (искусственные) применяются в оптич. системах спектрографов и др. приборах. СИЛЬВИНИТ, осадочная горная порода, состоящая из чередования тонких прослоев галита и сильвина. СИЛЬКЕБОРГ (Silkeborg), город в Дании, в долине р. Гудено, в центр. части п-ова Ютландия, в амте Орхус. 44, 1 тыс. жит. (1972). Машиностроение, текст. и пищ. пром-сть. Туризм. СИЛЬНОЕ РЕГУЛИРОВАНИЕ, автоматическое регулирование возбуждения или частоты вращения синхронных генераторов (компенсаторов) по отклонению напряжения или частоты, а кроме того, и по первым и вторым производным от тока ротора или статора, напряжения и др. параметров режима работы электроэнергетич. системы. С. р. позволяет " предвидеть" ещё не наступившие изменения режима и предотвращать их. С. р. осуществляется автоматич. регуляторами (АР) сильного действия, к-рые быстро и интенсивно воздействуют на ток возбуждения или впуск энергоносителя (пара, воды и т. д.) турбо- или гидрогенератора при изменениях режима (увеличении или уменьшении передаваемой мощности, коротких замыканиях и пр.) с целью поддержать требуемое напряжение в заданной точке прилегающего участка сети и предотвратить нарушение параллельной работы электростанций в энергосистеме (нарушение статич., динамич. и результирующей устойчивости). Пром-сть выпускает АР возбуждения сильного действия в унифицированном исполнении. Такими АР оборудованы мн. генераторы гидростанций, в т. ч. Братской и Красноярской ГЭС, мощные генераторы тепловых и атомных станций. Турбогенераторы Славянской и Костромской ГРЭС оборудованы также АР частоты вращения сильного действия. В сочетании с безинерционпыми тиристорными возбудителями синхронных машин АР сильного действия существенно улучшают качество электроэнергии и повышают надёжность функционирования Единой электроэнергетической системы СССР. Н. И. Овчаренко. СИЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ, одноиз основных фундаментальных (элементарных) взаимодействий прирсды (наряду с электромагнитным, гравитационным и слабым взаимодействиями). Частицы, участвующие в С. в., наз. адронами, в отличие от фотона и лептонов (электрона и позитрона, мюонов и нейтрино), не обладающих С. в. К адронам относятся все барионы (в частности, нуклоны - нейтрон п и протон р, гипероны) и мезоны (пи-мезоны, К-мезоны), в том числе большое количество т. н. ядерно-нестабильных частиц - резонансов. Одно из проявлений С. в.- ядерные силы, связывающие нуклоны в атомных ядрах. С. в. имеют малый радиус действия (~10-13 см) и на этих расстояниях значительно превосходят все др. типы взаимодействий. Характерное время, за к-рое происходят элементарные процессы, вызываемые С. в., составляет 10-23-10-24сек. С. в. обладают высокой степенью симметрии; они симметричны относительно пространственной инверсии, зарядового сопряжения, обращения времени. Специфическим для С. в. является наличие внутр. симметрии адронов: изотопической инвариантности, симметрии по отношению к фазовому преобразованию, приводящей к существованию особого сохраняющегося квантового числа - странности, а также SU(3)-симметрии (см. ниже). Впервые С. в. как силы новой, неизвестной ранее природы были по существу обнаружены в опытах Э. Резерфорда (1911) одновременно с открытием атомного ядра; именно этими силами объясняется обнаруженное рассеяние на большие углы а-частиц при их прохождении через вещество. Однако понятие С. в. было сформулировано позже, в основном в 30-х гг., в связи с проблемой ядерных сил. Общие свойства сильных взаимодействий Короткодействующий характер С. в. Важнейшая особенность С. в.- их короткодействующий характер; как уже отмечалось, они заметно проявляются лишь на расстояниях порядка 10-13см между взаимодействующими адронами, т. е. их радиус действия примерно в 100 000 раз меньше размеров атомов. На таких расстояниях С. в. в 100-1000 раз превышают электромагнитные силы, действующие между заряж. частицами. С увеличением расстояния С. в. быстро (приблизительно экспоненциально) убывают, так что на расстоянии неск. радиусов действия они становятся сравнимыми с электромагнитными взаимодействиями, а на ещё больших расстояниях практически исчезают. С короткодействующим характером С. в. связан тот факт, что С. в., несмотря на их огромную роль в природе, были экспериментально обнаружены только в 20 в., в то время как более слабые дальнодействующие электромагнитные и гравитац. силы были обнаружены и изучены гораздо раньше (вследствие дальнодействующего характера электромагнитных и гравитац. сил происходит сложение сил, действующих со стороны большого числа частиц, и таким образом возникает взаимодействие между макроскопич. телами). Для объяснения малого радиуса действия ядерных сил японский физик X. Юкава в 1935 высказал гипотезу, согласно к-рой С. в. между нуклонами (N) происходит благодаря тому, что они обмениваются друг с другом нек-рой частицей, обладающей массой, аналогично тому, как электромагнитное взаимодействие между заряж. частицами, согласно квантовой электродинамике (см. Квантовая теория поля), осуществляется посредством обмена " частицами света" - фотонами. При этом предполагалось, что существует спе-цифич. взаимодействие, приводящее к испусканию и поглощению промежуточной частицы - переносчика ядерных сил. Др. словами, вводился новый тип взаимодействий, к-рый позже назвали С. в. (Следует отметить, что впервые гипотеза об обменном характере ядерных сил для объяснения их малого радиуса действия выдвигалась независимо И. Е. Таммом и Д. Д. Иваненко.) Исходя из известного эксперимент. радиуса действия ядерных сил, Юкава оценил массу частицы - переносчика С. в. Такая оценка основана на простых квантовомеханич. соображениях. Согласно квантовой механике, время наблюдения системы A t и неопределённость в её энергии А Е связаны неопределённостей соотношением: А Е А t~h, где h - Планка постоянная. Поэтому, если свободный нуклон испускает частицу с массой т (т. е. энергия системы меняется согласно формуле относительности теории на величину А Е = mс 2, где с - скорость света), то это может происходить лишь на время A t~h/ mс 2. За это время частица, движущаяся со скоростью, приближающейся к предельно возможной скорости света с, может пройти расстояние порядка h/mc. Следовательно, чтобы взаимодействие между двумя частицами осуществлялось путём обмена частицей массы т, расстояние между этими частицами должно быть порядка (или меньше) h/mc, т. е. радиус действия сил, переносимых частицей с массой т, должен составлять величину h/mc. При радиусе действия ~ 10-13 см масса переносчика ядерных сил должна быть около 300 m е (где m е -масса электрона), или приблизительно в 6 раз меньше массы нуклона. Такая частица была обнаружена в 1947 и названа пи-мезоном (пионом, п). В дальнейшем выяснилось, что картина взаимодействия значительно сложнее. Оказалось, что, помимо заряженных п+- в нейтрального п°-мезонов с массами соответственно 273 те и 264 т е, взаимодействие передаётся большим числом др. мезонов с большими массами: р, w, y, К,... и т. д. Кроме того, определ. вклад в С. в. (напр., между мезонами и нуклонами) даёт обмен самими нуклонами и антинуклонами и их возбуждёнными состояниями - барионными резонансами. Из соотношения неопределённостей следует, что обмен частицами, имеющими массы больше массы пиона, происходит на расстояниях, меньших 10-13 см, т. е. определяет характер С. в. на малых расстояниях. Эксперимент, изучение различных реакций с адронами (таких, напр., как реакции с передачей заряда-" перезарядкой": п- + р-> п° + n, К- + р -> К° + n и др.) позволяет в принципе выяснить, какой вклад в С. в. даёт обмен теми или иными частицами. Относительная величина С. в. Для характеристики величины С. в. сравним их с электромагнитными взаимодействиями, для описания к-рых существует подробно разработанный математич. аппарат. Такое сравнение позволяет понять трудности, с к-рыми сталкивается разработка теории С. в. Взаимодействие заряж. частицы с электромагнитным полем -полем фотонов - определяется электрич. зарядом е частицы (к-рый и является константой электромагнитного взаимодействия), а вероятность испускания одного фотона при взаимодействии заряж. частиц, согласно квантовой электродинамике, пропорциональна безразмерной величине а = е 2/ hc ~=1/137 (наз. постоянной тонкой структуры). Вероятность испускания в к.-л. процессе п фотонов пропорциональна аn, т. е. в 137 раз меньше, чем вероятность испускания (п - 1) фотонов (исключение, требующее особого рассмотрения, - испускание большого числа т. н. инфракрасных фотонов с очень малой энергией). Ввиду малости величины а можно рассматривать процессы электромагнитного взаимодействия с помощью т. н. теории возмущений, последовательно учитывая обмен между заряж. частицами всё большим числом фотонов. Математически такая теория представляется в виде бесконечного асимптотич. ряда по степеням малого параметра а и даёт прекрасное согласие с экспериментом. Если, переходя к описанию С. в., ввести, напр. для характеристики взаимодействия нуклонов с полем п (пи) -мезонов, постоянную q - т. н. константу С. в., имеющую размерность электрич. заряда, то, как показывает сравнение с экспериментом, безразмерная величина q2/hc в С. в. (аналогичная величине а в электромагнитных) оказывается больше единицы: q 2/ hс ~=15. Это означает, что в процессах С. в. должен быть существен обмен большим числом частиц, а в случаях, когда энергия сталкивающихся адронов достаточно велика, должны превалировать множественные процессы с рождением большого числа вторичных частиц. Поэтому при рассмотрении процессов С. в. нельзя пользоваться теорией возмущений, столь эффективной для электромагнитных взаимодействий, и необходимо учитывать, что во взаимодействии реально участвует большое число частиц. Известно, что в нек-рых областях физики (напр., в физике твёрдого тела) имеются эффективные при-ближ. методы рассмотрения динамич. задач с учётом многих частиц, взаимодействие между к-рыми не мало. Успешное теоретич. рассмотрение такого рода задач возможно потому, что в них хорошо известно т. н. нулевое приближение для состояния системы, а не сильно возбуждённые состояния можно представить как совокупность элементарных возбуждений - квазичастиц, взаимодействием между к-рыми можно в нулевом приближении пренебречь (напр., тепловые колебания атомов твёрдого тела могут быть представлены как совокупность колебаний всей кристаллич. решётки, к-рым соответствуют квазичастицы - фононы). Возможно поэтому, что отсутствие последоват. теории С. в. связано с недостаточностью эксперимент. информации о вызываемых ими процессах и дальнейшие эксперимент. и теоретич. исследования помогут найти " нулевое приближение" для описания процесса С. в. Несмотря на отсутствие последоват. теории С. в., было установлено теоретически большое число связей между различными процессами С. в. Наличие такого рода связей вытекает, во-первых, из общих принципов квантовой теории поля, а во-вторых, из существования точных и приближ. симметрии, присущих С. в. (см. ниже). Вместе с тем большое значение имеют различные полуфеноменологич. модели С. в., позволяющие качественно (а в ряде случаев - довольно точно количественно) описывать процессы С. в. и предсказывать новые явления. С. в. и структура адронов. Из квантовомеханич. соображений, аналогичных тем, к-рые приводились для оценки радиуса действия ядерных сил, следует, что адроны должны быть окружены " облаком" непрерывно испускаемых и поглощаемых - т. н. виртуальных (см. Виртуальные частицы) - пионов и др. адронов. При этом радиус пионного " облака" по порядку величины должен составлять h/мс (где м - масса пиона), а радиусы " облаков", создаваемых более тяжёлыми адронами, обратно пропорциональны их массам. Вследствие большой величины g2/hc вероятность виртуального испускания адронов велика, т. е. " облака" должны иметь значит. плотность и существ. образом определять физ. процессы с участием адронов. Иными словами, из большой величины константы С. в. вытекает, что адроны должны иметь сложное внутр. строение и лишь условно могут наз. элементарными частицами (если даже отвлечься от возможности того, что они состоят из более фундамен., частиц - кварков; см. ниже). С. в. и электромагнитные характеристики адронов. С. в. существенно влияют на электромагнитные характеристики адронов. Благодаря закону сохранения электрич. заряда заряд адрона, включая полный заряд окружающих его " облаков", должен оставаться неизменным независимо от того, какие виртуальные превращения в них происходят. Т. о., С. в. не влияют на электрич. заряды адронов (к-рые являются целыми кратными элементарного электрич. заряда е). Однако движение зарядов в " облаках" создаёт электрич. ток и, следовательно, должно приводить к изменению магнитных моментов адронов. Этот вывод качественно согласуется с измерением магнитных моментов нуклонов. Магнитный момент протона м(мю)р~= 2, 79 м(мю) я, где м(мю) я-ядерный магнетон, а магнитный момент нейтрона м(мю)n ~=-1, 89 м(мю) я (знак минус указывает на то, что м(мю)n направлен в противоположную сторону по отношению к его собственному, внутреннему моменту количества движения - спину). Если бы протон и нейтрон не имели С. в., их магнитные моменты, согласно Дирака уравнению, должны были бы равняться: Поэтому, если считать, что " аномальный" магнитный момент нейтрона создаётся " облаком" отрицательно заряж. мезонов, образующихся, напр., при виртуальных превращениях то " аномальный" момент протона должен создаваться за счёт аналогичных виртуальных превращений протона в положительно заряж. мезоны, напр. Т. к. интенсивность таких переходов для нейтрона и протона одинакова (см. ниже), " аномальный" магнитный момент протона по абс. величине должен быть равен " аномальному" магнитному моменту нейтрона и иметь противоположный знак, т. е. сумма м(мю) р + м(мю)n должна быть близка к м(мю) я. Этот вывод качественно согласуется с измеренными на опыте значениями магнитных моментов: м(мю) р + м(мю)n~= 0, 9 м(мю) я. (Согласно модели кварков, отношение м(мю)n / м(мю)p должно быть равно -2/з> что также неплохо выполняется для измеренных значений магнитных моментов.) Вследствие того, что адроны окружены " облаками" мезонов, их заряд и магнитный момент должны быть распределены с определ. плотностью по области, занятой этими " облаками". В постоянных (или медленно меняющихся) электромагнитных полях размеры адронов практически не сказываются на их электромагнитных взаимодействиях (к-рые в этом случае полностью определяются зарядами адронов и их магнитными моментами). Однако если размеры неоднородностей поля (напр., длина волны де Бройля электронов или фотонов, взаимодействующих с адронами) меньше размеров мезонного " облака", распределение заряда и магнитного момента внутри адрона существенно влияет на характер взаимодействия. Изучая упругое рассеяние электронов с энергией выше неск. Гэв на протонах и дейтронах, можно экспериментально определить функции, характеризующие пространств. распределение заряда и магнитного момента внутри нуклонов (т. н. формфакторы). Результаты эксперимент. измерения формфакторов нуклонов указывают на то, что плотности заряда и магнитного момента плавно распределены по области, занятой " облаком", уменьшаясь к его периферии. При этом характер распределения заряда и магнитного момента внутри протона приблизительно одинаков и подобен распределению магнитного момента нейтрона. Вместе с тем отсутствуют эксперимент. указания на существование внутри нуклонов к.-л. выделенного " ядрышка" (" керна"), размеры к-рого превышали бы сотые доли размеров нуклона. Из-за рыхлого строения " облака" вероятность передать ему как целому большой импульс при упругом рассеянии электронов на нуклонах весьма мала и быстро падает с ростом переданного импульса. Если адронам передаётся большой импульс, то значительно более вероятными являются неупругие процессы, при к-рых из " облака", окружающего адрон, выбивается довольно значительное число вторичных частиц, а электроны теряют заметную часть своей энергии (такие процессы получили название глубоко неупругих). В отличие от процессов упругого рассеяния, вероятность передачи больших импульсов от электронов к адронам при этом довольно значительна (предположение о таком поведении глубоко неупругих процессов было высказано впервые М. А. Марковым). Оказалось, что измеренные на опыте т. н. структурные функции, характеризующие поведение адроноз в глубоко неупругих процессах, зависят только от отношения квадрата импульса, переданного " облаку" адронов, к энергии, потерянной электроном. Т. о., имеет место закон подобия: структурные функции не меняются, если с увеличением переданного импульса растёт переданная энергия. Теоретич. указание на такую зависимость следовало из т. н. алгебры токов (см. ниже). В определённых предположениях оно получается и из общих принципов квантовой теории поля. Простая интерпретация эксперимент. данных по глубоко неупругому рассеянию следует также из модели " партонов" (Р. Фейнман). В этой модели предполагается, что адроны в глубоко неупругих процессах ведут себя как совокупность точечных частиц-" пapтонов", некоторым образом распределённых по импульсам. В качестве партонов можно рассматривать кварки, считая, что адроны, помимо трёх кварков (как это предполагалось в первой гипотезе кварков), содержат также " облако" кварков-антикварков. Динамика сильных взаимодействий Благодаря короткодействующему характеру С. в. его прямое эксперимент. изучение возможно лишь в процессах рассеяния микрочастиц. При этом для того, чтобы произошло рассеяние, прицельный параметр столкновения должен не превышать радиуса действия сил. Отсюда следует, что макс. относит. момент количества движения частиц, при к-ром ещё происходит рассеяние, определяется величиной! p! Ro (где р - относит. импульс частиц, a R0 - радиус действия сил), т. е. в процессе рассеяния участвуют волны с орбит. моментами При низких энергиях, когда kR0< < l, рассеяние происходит в состоянии с орбитальным моментом / = 0 (в S-волне) и является сферически симметричным (т. е. происходит с равной вероятностью на любой угол). Область энергий Е, в к-рой выполняется это условие, ограничена значениями Е< < (10-15) Мэв. В указанной области процесс рассеяния полностью описывается с помощью двух параметров - длины рассеяния и эффективного радиуса взаимодействия. При более высоких энергиях (kR0 ~ 1) для описания процесса рассеяния могут быть эффективно использованы т. н. фазы рассеяния, эксперимент. определение к-рых даёт важные сведения о С. в. Когда энергия столкновения превышает порог рождения вторичных частиц, в процессах С. в. начинают преобладать неупругие реакции. В области энергий, при к-рых в рассеянии участвует небольшое число парциальных волн, наблюдаются ярко выраженные пики в эффективном поперечном сечении рассеяния а при энергиях, соответствующих образованию резонансов; при энергиях, превышающих неск. Гэв, число парциальных волн велико и вклад резонансов в полное сечение становится незначительным (рис. 1, а). Неупругие процессы при высоких энергиях. Представление об адроне как об ''облаке" сильно взаимодействующих частиц с определ. радиусом позволяет качественно понять картину С. в. при столкновении адронов высоких энергий. Такие столкновения удобно рассматривать в системе центра инерции (с. ц. и.) сталкивающихся частиц (в системе координат, в к-рой центр инерции сталкивающихся частиц покоится, т. е. частицы движутся навстречу друг другу с равными по величине и противоположными по направлению импульсами). Пусть при столкновении двух адронов высокой энергии они пролетают друг относительно друга так, что их " облака" перекрываются. Благодаря большой величине константы С. в. такие столкновения должны сопровождаться вылетом большого числа вторичных частиц. Эффективное сечение множеств. процессов должно быть, следовательно, постоянным и равным пR02 (где R0 - радиус действия С. в., к-рый в рассматриваемой " наглядной" модели равен сумме радиусов двух сталкивающихся " облаков"). Исходя из такой упрощённой модели, легко представить и кинематику рождения вторичных частиц. Можно считать, что при столкновении происходит возбуждение " облаков", к-рое после их разлёта приводит к испусканию вторичных частиц, летящих в основном по направлениям разлёта обоих " облаков" (рис. 2). Следует ожидать также, что из " центр." области столкновения могут испускаться в различных направлениях более медленные вторичные частицы. Долгое время, пока единств. источником частиц с энергией свыше неск. десятков Гэв были космические лучи, считалось, что приблизительно такая картина множеств. процессов и наблюдается на опыте (в частности, измерения в очень широкой области энергий указывали на приблизит. постоянство эффективного сечения множеств. процессов; более точные заключения в условиях измерений с космич. лучами сделать было трудно). Эксперименты, выполненные на ускорителях высокой энергии - в Серпухове (СССР), Европейском центре ядерных исследований (ЦЕРНе) и Батавии (США), привели к существ. уточнениям картины множеств. процессов. Было установлено, что полные эффективные сечения взаимодействия адронов медленно уменьшаются с ростом энергии и становятся приблизительно постоянными при энергиях в неск. десятков Гэв. При дальнейшем увеличении энергии наблюдается рост полных сечений рассеяния (см. рис.1, 6); впервые он наблюдался при рассеянии К+-мезонов на нуклонах на Серпуховском ускорителе (т. н. " Серпуховский эффект"). Опыт показывает, что возрастание сечений взаимодействия а носитуниверсальный характер для адронов и, по-видимому, приближается к максимально возможному росту, установленному на основе общих принципов совр. квантовой теории: б ~ln2E (где Е - энергия столкновения). Это свидетельствует о том, что при высоких энергиях проявляются новые дополнит. механизмы взаимодействия, приводящие к росту радиуса С. в. Рис. 1. Полные эффективные сечения о рассеяния на протонах п+-мезонов, К+-мезонов, протонов (р) и антипротонов ( р ): а - в интервале энергий до 10 Гэв; 6 -при энергиях выше 6 Гэв (разные значки - измерения на различных ускорителях). Рис. 2. Схематическое изображение столкновения частиц в системе их центра инерции, а - упругое столкновение; б -неупругий процесс: / - центральная область вылета вторичных частиц, 2, 3 -фрагментации частиц а и b. Изучение множеств. процессов при высокой энергии даёт ключ для понимания динамики С. в. В этом смысле большое значение имеет изучение особого класса процессов - инклюзивных (когда из совокупности множеств. событий выделяются процессы с рождением к.-л. определ. вторичных частиц и измеряются угловые и энергетич. распределения для этих частиц). Впервые эти процессы теоретически рассмотрены и предложены для изучения сов. физиками. Для инклюзивных процессов открыт своеобразный закон подобия - масштабная инвариантность, согласно к-рой распределение вторичных частиц по импульсам (если измерять импульс в долях максимально возможного импульса при данной энергии столкновения) оказывается одинаковым при разных энергиях столкновения. Масштабная инвариантность в адронных столкновениях (так же как в глубоко неупругих столкновениях лептонов с адронами) может дать сведения о характере особенностей взаимодействия на т. н. световом конусе (т. е. когда взаимодействие распространяется с предельно возможной скоростью - скоростью света). Знание этих особенностей может быть решающим звеном для построения теории С. в. Упругое рассеяние адронов при высокой энергии. Упругими наз. процессы, при к-рых сталкивающиеся частицы в результате взаимодействия меняют лишь направление своего движения (т. е. не меняется сорт частиц и не происходит дополнит. рождения вторичных частиц). При столкновении адронов высокой энергии, когда они сближаются на расстояние, меньшее радиуса С. в., доминирует рождение вторичных частиц. Тем не менее упругое рассеяние в случае столкновений адронов должно неизбежно возникать из-за волновых свойств частиц. Пояснить это можно на примере волнового процесса - дифракции света. Если параллельный пучок света падает на абсолютно поглощающий (" чёрный") шарик радиуса К„, то непосредственно за шариком образуется область тени, отвечающая полному поглощению света шариком. Однако на далёких расстояниях благодаря волновой природе света будет происходить дифракция - распространение световых колебаний в область геометрич. тени. По порядку величины угол, на к-рый происходит дифракция, равен отношению длины волны света л(лямбда) к радиусу шарика R0 (т. е. л(лямбда) /R0). Из-за интерференции волн дифракц. картина представляет собой совокупность убывающих с ростом углов максимумов и минимумов интенсивности. Для " чёрного" шарика с " резкими" краями интенсивность в минимумах падает до нуля, а для шарика с " размытыми" краями (т. е. с уменьшающейся к краям поглощающей способностью) различие между максимумами и минимумами интенсивности сглаживается. При уменьшении длины волны л(лямбда) углы, на к-рые происходит дифракция, уменьшаются, однако общий поток дифрагирующего света остаётся постоянным, т. к. амплитуда дифракции под очень малыми углами обратно пропорциональна длине волны, т. е. растёт с уменьшением л(лямбда). Эффективное сечение дифракции для " чёрного" шарика с резкими краями оказывается равным эффективному сечению поглощения пR02. Упругое рассеяние при столкновении адронов высокой энергии должно качественно напоминать явление дифракции. Действительно, если сближение адронов на расстояние, меньшее радиуса действия С. в., приводит к множеств. рождению частиц (т. е. выводит частицы из упругого канала реакции, что соответствует как бы поглощению), то упругое рассеяние должно возникать в основном за счёт волновых свойств частиц аналогично дифракции на " чёрном" шарике с радиусом, равным радиусу С. в. Поскольку длина волны де Бройля для частиц с импульсом р равна л(лямбда) = h/|р|, то упругое рассеяние адронов при высоких энергиях должно происходить в основном на малые углы - в конусе с угловым раствором v~ л(лямбда) /R0 = h/|р1R0. При этом амплитуда упругого рассеяния для очень малых (в пределе - нулевых) углов рассеяния должна расти пропорционально импульсу частиц. Этот вывод следует из оптической теоремы, если считать, что полное эффективное сечение рассеяния при высоких энергиях остаётся постоянным. Эксперимент. изучение процессов упругого рассеяния адронов в общих чертах подтверждает дифракц. характер рассеяния. В нек-рых случаях удаётся даже наблюдать появление вторичных дифракц. максимумов (рис. 3). Рис. 3. Дифференциальные сечения рассеяния при различных энергиях Е протонов (р) и антипротонов (р~) на протонах как функция квадрата переданного импульса: - t = 2р2 (1 - cosv), где р -импульс, а v - угол рассеяния в системе центра инерции частиц. Угловая зависимость сечения такая же, как при дифракции на " чёрном" шарике с плавно уменьшающейся к краям поглощательной способностью (на шарике с " размытым" краем). Однако с ростом энергии обнаруживаются более сложные закономерности, указывающие на существование механизмов взаимодействия с различными радиусами, зависящими от энергии взаимодействия.
|