Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
XVIII. Кино 28 страница
Физические свойства. Элементарный Ф. существует в виде нескольких аллотропич. модификаций, гл. из к-рых - белая, красная и чёрная. Белый Ф.- воскообразное, прозрачное вещество с характерным запахом, образуется при конденсации паров Ф. Белый Ф. в присутствии примесей -следов красного Ф., мышьяка, железа и т. п.- окрашен в жёлтый цвет, поэтому товарный белый Ф. наз. жёлтым. Существуют две формы белого Ф.: а- и В-форма. а-Модификация представляет собой кристаллы кубич. системы (а =18, 5 А); плотность 1, 828 г/см3, t пл 44, 1 0С, tкип 280, 5 °С, теплота плавления 2, 5 кдж/моль Р4 (0, 6 ккал/молъ Р4), теплота испарения 58, 6 кдж/моль Р4(14, 0ккал/молъ Pi), давление пара при 25 0С 5, 7 н/м2 (0, 043 мм рт. ст.). Коэфф. линейного расширения в интервале темп-р от 0 до 44 °С равен 12, 4*10-4, теплопроводность 0, 56 вт/(м • К) [1, 1346 • 10-3 кал.(см • сек • °С)] при 25 0С. По электрич. свойствам а-белый Ф. близок к диэлектрикам: ширина запрещённой зоны ок. 2, 1 эв, удельное электросопротивление 1, 54*1011 ом*см, диамагнитен, удельная магнитная восприимчивость -0, 86 • 10-6. Твёрдость по Бринеллю 6 Мн/м2 (0, 6 кгс/мм2). а-Форма белого Ф. хорошо растворяется в сероуглероде, хуже - в жидком аммиаке, бензоле, четырёххлористом углероде и др. При -76, 9 °С и давлении 0, 1 Мн/м2(1 кгс/см2) a -форма переходит в низкотемпературную В-форму (плотность 1, 88 г /см3). С повышением давления до 1200 Мн/м2 (12 тыс. кгс/см2) переход происходит при 64, 5 °С. В-Форма - кристаллы с двойным лучепреломлением, их структура окончательно не установлена. Белый Ф. ядовит: на воздухе при темп-ре ок. 40 °С самовоспламеняется, поэтому его следует хранить под водой (растворимость в воде при 25 0С 3, 3*10-4 %). Нагреванием белого Ф. без доступа воздуха при 250-300 °С в течение нескольких часов получают красный Ф. Переход экзотермичен, ускоряется ультрафиолетовыми лучами, а также примесями (иод, натрий, селен). Обычный товарный красный Ф. практически полностью аморфен; имеет цвет от тёмно-коричневого до фиолетового. При длительном нагревании необратимо может переходить в одну из кристаллических форм (триклинную, кубич. и др.) с различными свойствами: плотностью от 2, 0 до 2, 4 г/см3, t пл от 585 до 610 0С при давлении в несколько десятков атмосфер, темп-рой возгонки от 416 до 423 °С, удельным электросопротивлением от 109 до 1014 ом*см. Красный Ф. на воздухе не самовоспламеняется, вплоть до температуры 240-250 °С, но самовоспламеняется при трении или ударе; нерастворим в воде, а также в бензоле, сероуглероде и др., растворим в трибромиде Ф. При темп-ре возгонки красный Ф. превращается в пар, при охлаждении к-рого образуется в основном белый Ф. При нагревании белого Ф. до 200- 220 °С под давлением (1, 2-1, 7). 103 Мн/м2 [(12-17)-103 кгс/смг] образуется чёрный Ф. Это превращение можно осуществить без давления, но в присутствии ртути и небольшого кол-ва кристаллов чёрного Ф. (затравки) при 370 °С в течение 8 сут. Чёрный Ф. представляет собой кристаллы ромбич. структуры (а = 3, 31 А, b= 4, 38 А, с = 10, 50 А), решётка построена из волокнистых слоев с характерным для Ф. пирамидальным расположением атомов, плотность 2, 69 г/см3, t пл ок. 1000 0С под давлением 1, 8*103 Мн/м2 (18*103 кгс/см2). По внешнему виду чёрный Ф. похож на графит; полупроводник: ширина запрещённой зоны 0, 33 эв при 25 0С; имеет удельное электросопротивление 1, 5 ом*см, температурный коэфф. электросопротивления 0, 0077, диамагнитен, удельная магнитная восприимчивость -0, 27*10-6. При нагревании до 560-580 °С под давлением собств. паров превращается в красный Ф. Чёрный Ф. малоактивен, с трудом воспламеняется при поджигании, поэтому его можно безопасно подвергать механич. обработке на воздухе. Атомный радиус Ф. 1, 34 А, ионные радиусы: Р5+ 0, 35 А, Р3+ 0, 44 А, Р3-1, 86 А. Атомы Ф. объединяются в двухатомные (Р2), четырёхатомные (P4) и полимерные молекулы. Наиболее стабильны при нормальных условиях полимерные молекулы, содержащие длинные цепи связанных между собой P4 - тетраэдров. В жидком, твёрдом виде (белый Ф.) и в парах ниже 800 °С Ф. состоит из молекул P4. При темп-pax выше 800 °С молекулы P4 диссоциируют на Р2, к-рые, в свою очередь, распадаются на атомы при темп-ре свыше 2000 °С. Только белый Ф. состоит из молекул Р4, все остальные модификации - полимеры. Химические свойства. Конфигурация внешних электронов атома Ф. 3s23p3; в соединениях наиболее характерны степени окисления +5, +3, и -3. Подобно азоту, Ф. в соединениях гл. обр. ковалентен. Ионных соединений, подобных фосфидам Na3P, Са3Р2, очень мало. В отличие от азота, Ф. обладает свободными 3d-орбиталями с довольно низкими энергиями, что приводит к возможности увеличения координационного числа и образованию донорно-акцепторных связей. Ф. химически активен, наибольшей активностью обладает белый Ф.; красный и чёрный Ф. в хим. реакциях гораздо пассивнее. Окисление белого Ф. происходит по механизму цепных реакций. Окисление Ф. обычно сопровождается хемилюминесценцией. При горении Ф. в избытке кислорода образуется пя-тиокись Р4O10 (или Р2О5), при недостатке - в основном трёхокись Р4О6 (или Р2О3). Спектроскопически доказано существование в парах P4O7, Р4O8, Р2О6, РО и др. фосфора окислов. Пятиокись Ф. получают в пром. масштабах сжиганием элементарного Ф. в избытке сухого воздуха. Последующая гидратация Р4O10 приводит к получению орто-(Н3РО4) и поли-(Нn+2РnО3n+1) фосфорных к-т. Кроме того, Ф. образует фосфористую кислоту Н3РО3, фосфорноватую кислоту Н4Р2О6 и фосфорноватистую кислоту Н3РО2, а также над-кислоты: надфосфорную Н4Р2О8 и мо-нонадфосфорную Н3РО5. Широкое применение находят соли фосфорных к-т (фосфаты), в меньшей степени - фосфиты и гипофосфиты. Ф. непосредственно соединяется со всеми галогенами с выделением большого кол-ва тепла и образованием тригалоге-нидов (РХ3, где X - галоген), пентага-логенидов (РХ5) и оксигалогенидов (напр., РОХ3) (см. Фосфора галогениды). При сплавлении Ф. с серой ниже 100 °С образуются твёрдые растворы на основе Ф. и серы, а выше 100 °С происходит эк-зотермич. реакция образования кристаллич.сульфидов P4S3, P4S5, P4S7, P4S10, из которых только P4S5 при нагревании выше 200 °С разлагается на P4S3 и P4S7, а остальные плавятся без разложения. Известны оксисульфиды фосфора: P2O3S2, P2O2S3, P4O4S3, P6O10S5 и P4O4S3. Ф. по сравнению с азотом менее способен к образованию соединений с водородом. Фосфористый водород фос-фин РН3 и дифосфин Р2Н4 могут быть получены только косвенным путём. Из соединений Ф. с азотом известны нитриды PN, P2N3, P3N5 - твёрдые, химически устойчивые вещества, полученные при пропускании азота с парами Ф. через электрич. дугу; полимерные фосфони-трилгалогениды - (PNX2)n (напр., по-лифосфонитрилхлорид), полученные взаимодействием пентагалогенидов с аммиаком при различных условиях; амидо-имидофосфаты - соединения, как правило, полимерные, содержащие наряду с Р-О-Р связями Р-NH-Р связи. При темп-pax выше 2000°С Ф. реагирует с углеродом с образованием карбида РС3- вещества, не растворяющегося в обычных растворителях и не взаимодействующего ни с к-тами, ни со щелочами. При нагревании с металлами Ф. образует фосфиды. Ф. образует многочисленные фосфорорганические соединения. Получение. Произ-во элементарного Ф. осуществляется электротермич. восстановлением его из природных фосфатов (апатитов или фосфоритов) при 1400-1600 °С коксом в присутствии кремнезёма (кварцевого песка): 2Са3 (РО4)2 + 10С + nSiO2 = = P4 + 10СО + 6СаО • nSiO2 Предварительно измельчённая и обогащённая фосфорсодержащая руда смешивается в заданных соотношениях с кремнезёмом и коксом и загружается в электропечь. Кремнезём необходим для снижения темп-ры реакции, а также увеличения её скорости за счёт связывания выделяющейся в процессе восстановления окиси кальция в силикат кальция, к-рый непрерывно удаляется в виде расплавленного шлака. В шлак переходят также силикаты и окислы алюминия, магния, железа и др. примеси, а. также ферро-фосфор (Fe2P, FeP, Fe3P), образующийся при взаимодействии части восстановленного железа с Ф. Феррофосфор, а также растворённые в нём небольшие кол-ва фосфидов марганца и др. металлов по мере накопления удаляются из электропечи с целью последующего использования при произ-ве специальных сталей. Пары Ф. выходят из электропечи вместе с газообразными побочными продуктами и летучими примесями (СО, SiF4, РН3, пары воды, продукты пиролиза органич. примесей шихты и др.) при темп-ре 250-350 °С. После очистки от пыли содержащие фосфор газы направляют в конденсационные установки, в которых при темп-ре не ниже 50 0С собирают под водой жидкий технич. белый Ф. Разрабатываются методы получения Ф. с применением газообразных восстановителей, плазменных реакторов с целью интенсификации произ-ва за счёт повышения темп-р до 2500-3000 °С, т. е. выше темп-р диссоциации природных фосфатов и газов-восстановителей (напр., метана), используемых в качестве транспортирующего газа в низкотемпературной плазме. Применение. Осн. масса производимого Ф. перерабатывается в фосфорную кислоту и получаемые на её основе фосфорные удобрения и технич. соли (фосфаты). Белый Ф. используется в зажигательных и дымовых снарядах, бомбах; красный Ф.- в спичечном произ-ве. Ф. применяется в произ-ве сплавов цветных металлов как раскислитель. Введение до 1% Ф. увеличивает жаропрочность таких сплавов, как фехраль, хромаль. Ф. входит в состав нек-рых бронз, т. к. повышает их жидкотекучесть и стойкость против истирания. Фосфиды металлов, а также нек-рых неметаллов (В, Si, As и т. п.) используются при получении и легировании полупроводниковых материалов. Частично.Ф. применяется для получения хлоридов и сульфидов, к-рые служат исходными веществами для произ-ва фосфорсодержащих пластификаторов (напр., трикрезилфосфат, трибутилфосфат и др.), медикаментов, фосфорорганических пестицидов, а также применяются в качестве добавок в смазочные вещества и в горючее. Техника безопасности. Белый Ф. и его соединения высокотоксичны. Работа с Ф. требует тщательной герметизации аппаратуры; хранить белый Ф. следует под водой или в герметически закрытой металлич. таре. При работе с Ф. следует строго соблюдать правила техники безопасности. Л. В. Кубасова. Ф. в организме. Ф.- один из важнейших биогенных элементов, необходимый для жизнедеятельности всех организмов. Присутствует в живых клетках в виде орто- и пирофосфорной к-т и, их производных, а также входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, фосфорных эфиров углеводов, мн. кофер-ментов и др. органич. соединений. Благодаря особенностям хим. строения ато- мы Ф., подобно атомам серы, способны к образованию богатых энергией связей в макроэргических соединениях: адено-зинтрифосфорной к-те (АТФ), креа-тинфосфате и др. (см. Окислительное фосфорилирование). В процессе биол. эволюции именно фосфорные соединения стали основными, универсальными хранителями генетич. информации и переносчиками энергии во всех живых системах. Др. важная роль соединений Ф. в организме заключается в том, что ферментативное присоединение фосфорильного остатка [ris] к различным органич. соединениям (фосфорилирование) служит как бы " пропуском" для их участия в обмене веществ, и, наоборот, отщепление фосфорильного остатка (де-фосфорилирование) исключает эти соединения из активного обмена. Ферменты обмена Ф.- киназы, фосфорилазы и фосфатазы. Гл. роль в превращениях соединений Ф. в организме животных и человека играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D. Содержание Ф. (в мг на 100 г сухого вещества) в тканях растений - 230-350, мор. животных - 400-1800, наземных - 1700-4400, у бактерий - около 3000; в организме человека особенно много Ф. в костной ткани (неск. более 5000), в тканях мозга (ок. 4000) и в мышцах (220-270). Суточная потребность человека в Ф. 1-1, 2 г (у детей она выше, чем у взрослых). Из продуктов питания наиболее богаты Ф. сыр, мясо, яйца, зерно бобовых культур (горох, фасоль и др.). Баланс Ф. в организме зависит от общего состояния обмена веществ. Нарушение фосфорного обмена приводит к глубоким биохим. изменениям, в первую очередь в энергетическом обмене. При недостатке Ф. в организме у животных и человека развиваются остеопороз и др. заболевания костей, у растений - фосфорное голодание (см. Диагностика питания растений). Источником Ф. в живой природе служат его неорганич. соединения, содержащиеся в почве и растворённые в воде. Из почвы Ф. извлекается растениями в виде растворимых фосфатов. Животные обычно получают достаточное кол-во Ф. с пищей. После гибели организмов Ф. вновь поступает в почву и донные отложения, участвуя т. о. в круговороте веществ. Важная роль Ф. в регуляции обменных процессов обусловливает высокую чувствительность мн. ферментных систем живых клеток к действию фосфорорганич. соединений. Это обстоятельство используют в медицине при разработке лечебных препаратов, в с. х-ве при произ-ве фосфорных удобрений, а также при создании эффективных инсектицидов. Мн. соединения Ф. чрезвычайно токсичны и нек-рые из фосфорорганич. соединений могут быть причислены к боевым отравляющим веществам (зарин, зоман, табун). Радиоактивный изотоп Ф. 32Р широко используют в биологии и медицине как индикатор при исследовании всех видов обмена веществ и энергии в живых организмах (см. Изотопные индикаторы). Н. Н. Чернов. Отравления Ф. и его соединениями наблюдаются при их термоэле-ктрич. возгонке, работе с белым Ф., произ-ве и применении фосфорных соединений. Высокотоксичны фосфорорганические соединения, оказывающие анти-холинэстеразное действие. Ф. проникает в организм через органы дыхания, желудочно-кишечный тракт, кожу. Острые отравления проявляются жжением во рту и желудке, головной болью, слабостью, тошнотой, рвотой. Через 2-3 сут возникают боли в подложечной области, правом подреберье, желтуха. Для хро-нич. отравлений характерны воспаление слизистых оболочек верх. дыхательных путей, признаки токсич. гепатита, нарушение кальциевого обмена (развитие остеопороза, ломкость, иногда омертвение костной ткани, чаще - на ниж. челюсти), поражение сердечно-сосудистой и нервной систем. Первая помощь при остром отравлении через рот (наиболее частом) - промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы, хлористого кальция и др. При ожогах кожи - обработать поражённые участки растворами медного купороса или соды. Глаза промывают 2%-ным раствором питьевой соды. Профилактика: соблюдение правил техники безопасности, личная гигиена, уход за полостью рта, раз в 6 мес - мед. осмотры работающих с Ф. Лекарственные препараты, содержащие Ф. (аденозинтрифосфорная кислота, фитин, глицерофосфат кальция, фосфрен и др.), влияют гл. обр. на процессы тканевого обмена и применяются при заболеваниях мышц, нервной системы, при туберкулёзе, упадке питания, малокровии и др. Радиоактивные изотопы Ф. используют в качестве изотопных индикаторов для изучения обмена веществ, диагностики заболеваний, а также для лучевой терапии опухолей (см. также Радиоактивные препараты). А. А. Каспаров. Лит.: Краткая химическая энциклопедия, т. 5, М., 1967; Коттон Ф., Уилкинсон Дж., Современная неорганическая химия, пер. с англ., ч. 2, М., 1969; Везер В а н - Д ж., Фосфор и его соединения, пер. с англ., т. 1, М., 1962; Ахметов Н. С., Неорганическая химия, 2 изд., М., 1975; Некрасов Б. В., Основы общей химии, 3 изд., т. 1-2, М., 1973; Моссэ А. Л., Печковский В. В., Применение низкотемпературной плазмы в технологии неорганических веществ, Минск, 1973; Горизонты биохимии, Сб. ст., пер. с англ., М., 1964; Рапопорт С. М., Медицинская биохимия, пер. с нем., М., 1966; Скулачев В. П., Аккумуляция энергии в клетке, М., 1969; Происхождение жизни и эволюционная биохимия, М., 1975. ФОСФОРА ГАЛОГЕНИДЫ, соединения фосфора с галогенами, из которых важны и хорошо изучены тригалогениды РХ3 (где X - галоген): PF3, PC13, РВr3; пентагалогениды РХз: PF5, РС15, РВr5. Известны, но менее изучены мо-ногалогениды РХ (напр., РС1, РВr); дигалогениды Р2Х4 (напр., Р2С14, P2F4); смешанные Ф. г. типа PFC12, PF3C12; полигалогениды, содержание галогена в к-рых более пяти (напр., РВr7, РС161), и оксигалогениды (напр., РОС13, POF3). Ф. г. чрезвычайно реакционноспособ-ны, причём хим. активность уменьшается от фторидов к иодидам; в вакууме перегоняются без разложения, водой легко гидролизуются. Ф. г. способны образовывать соединения типа PC13*5NH3 в безводных средах. Из Ф. г. наиболее изучены трихлорид и пентахлорид фосфора. Трихлорид фосфора (трёх-хлористый фосфор) РС13, бесцветная жидкость, t пл -93, 6 0С, tкип 76, 1 °С, плотность 1, 575 г/см3 при 20 °С; растворим в эфире, бензоле, хлороформе, сероуглероде, четырёххлористом углероде. Легко гидролизуется, образуя фосфористую и соляную к-ты. Получают хлорированием белого фосфора в растворе РС13 (в лабораторных условиях белый фосфор заменяют красным). Используют для синтеза фосфорорганич. соединений. РС13 токсичен, вызывает ожо-ги, раздражает глаза, дыхательные пути. Пентахлорид фосфора (пятихлористый фосфор) РСl5, зеленовато-белые кристаллы, tпл 167 °С (в запаянной трубке), плотность 2, 11 г/см3, легко сублимируется, растворим в четырёххлористом углероде и сероуглероде, в воде гидролизуется с образованием окси-хлорида РОС13 и соляной к-ты. Получают хлорированием РС13. Используется в основном как хлорирующий реагент в органич. синтезе. РСl5 токсичен. Лит. см. при ст. Фосфор. Л. В. Кубасова. ФОСФОРА ОКИСЛЫ, соединения фосфора с кислородом. Известны: недоокись Р4О, закись Р4О2(Р2О), перекись Р2О6(РО3), трёхокись, или фосфористый ангидрид Р4О6(РаО3), пятиокись, или фосфорный ангидрид Р4О10(Р2О5), четырёхокись (РО2)n. Наибольшее значение имеют фосфорный ангидрид, фосфористый ангидрид и четырёхокись фосфора. Фосфорный ангидрид Р4О10 (Р2О5), белый чрезвычайно гигроскопичный порошок, склонный к полиморфизму (число модификаций точно не установлено); в Р4О10 атом фосфора окружён четырьмя атомами кислорода (структура тетраэдра), причём три из них служат вершинами трёх смежных РО4-тетраэдров, образуя Р-О-Р связи. Товарный продукт - белая, снегоподобная масса (плотность 2, 28-2, 31 г/см3, темп-pa возгонки 358-362 °С, tпл 420°С), содержащая в основном кристаллич. гексагональную модификацию (т. н. Н-форму) с примесью аморфной модификации. Состав Н-формы - Р4О10; остальные две кристаллич. модификации полимерного строения менее изучены. Фосфорный ангидрид обладает сильным дегидратирующим действием, позволяющим удалять из веществ не только адсорбированную воду, но и кристаллизационную и даже конституционную (структурную, химически связанную). Фосфорный ангидрид растворяется в воде с выделением тепла, образуя полимерные фосфорные к-ты (циклические и линейные), а в конечном счёте, при достаточно большом кол-ве воды - ортофосфорную к-ту. При взаимодействии с основными окислами образуются фосфаты, с галогенидами - оксигалогениды, с металлами - смесь фосфатов и фосфидов; легко реагирует со всеми органич. веществами основного типа. Фосфорный ангидрид реагирует с сухим и влажным аммиаком, образуя фосфаты аммония, содержащие наряду с Р-О-Р связями Р-NH-Р связи. Под действием света P4O10 люминесцирует. В пром. масштабах Р4О10 получают сжиганием элементарного фосфора в избытке сухого воздуха с последующей конденсацией твёрдого продукта из паров. Очищают Р4О10 от примесей (фосфорных к-т), возгонкой. Фосфорный ангидрид в виде паров или дыма сушит слизистые оболочки, вызывает кашель, удушье, отёк лёгких, ожоги на коже, поэтому при работе с ним следует соблюдать правила техники безопасности. Применяют фосфорный ангидрид для удаления воды из газов и жидкостей (не реагирующих с Р4О10), в органич. и неорганич. синтезах как конденсирующий агент, иногда как компонент фосфатных стёкол и катализатор. Фосфористый ангидрид Р4О6(Р2О3), бесцветное хлопьевидное вещество, кристаллич. структура моноклинная, плотность 2, 135 г/см3, t пл 23, 8 0С, tкип 175, 4 °С, растворяется в сероуглероде и бензоле. При растворении Р4О6 в холодной воде образуется фосфористая к-та Н3РО3, а в горячей воде - элементарный фосфор, фосфин, фосфорная к-та и др. соединения. При нагревании выше 210 °С трёхокись фосфора разлагается на РО2 и красный фосфор. Легко окисляется воздухом до пятиокиси. Получают трёхокись окислением фосфора при ограниченном доступе воздуха. Трёхокись фосфора широко используется в органических синтезах. Четырёхокись фосфора (РО2)n, белый хлопьевидный порошок, после возгонки которого образуются блестящие кристаллы; плотность 2, 54 г/см3 при 22, 6 0С; имеются данные о полимерном строении четырёхокиси. Хорошо растворима в воде, образует с ней в основном Н3РО3 и конденсированные полифосфорные к-ты, а также небольшое кол-во РН3. Может быть получена, подобно трёх-окиси, сжиганием фосфора при низкой темп-ре с ограниченным кол-вом воздуха или нагреванием Р4О6 в запаянной трубке при 250 °С с последующей очисткой. Лит. см. при ст. Фосфор. Л. В. Кубасова. ФОСФОРЕСЦЕНЦИЯ, люминесценция, продолжающаяся значительное время после прекращения возбуждения (в отличие от флуоресценции). Разделение люминесценции по длительности послесвечения на Ф. и флуоресценцию весьма условно, по существу устарело, т. к. не отражает механизма процесса преобразования энергии. Ф. продолжается иногда неск. часов и даже суток, а иногда - неск. микросекунд. Ф. кристаллофосфоров возникает при рекомбинации электронов и дырок, разделённых во время возбуждения. Затягивание послесвечения в этом случае связано с захватом электронов и дырок ловушками (см. рис. 3 в ст. Люминесценция), из к-рых они могут освободиться, лишь получив дополнит. энергию, определяемую глубиной ловушки. Ф. сложных органич. молекул связана с пребыванием молекул в метастабилъном состоянии, вероятность перехода из к-рого в основное состояние мала. Яркость Ф. органич. молекул уменьшается со временем обычно по экспоненциальному закону. Закон затухания Ф. кристаллофосфоров сложен, в ряде случаев он приближённо описывается формулой Беккереля: В = В0 (1 + at)-а, где t - время, a и a - постоянные, а В0- начальная яркость. Сложность закона обусловлена наличием в кристаллофос-форах ловушек разных сортов. Повышение темп-ры кристаллофосфоров, как правило, ускоряет затухание. От интенсивности возбуждения затухание Ф. зависит только в случае ре-комбинационной люминесценции. Напр., начальные стадии Ф. кристаллофосфо- ров резко ускоряются при увеличении интенсивности возбуждения. На поздних стадиях яркость Ф. мало зависит от интенсивности возбуждения (асимп-тотич. свойство кривых затухания). На Ф. кристаллофосфоров влияет также освещение инфракрасным светом и включение электрич. поля. Лит. см. при ст. Люминесценция. ФОСФОРИЛАЗЫ, ферменты класса трансфераз. Катализируют обратимые реакции переноса гликозильных групп (остатков моносахаридов) на ортофос-фат (фосфоролиз). Фосфорилазная реакция может быть представлена урав- фосфорилаза нением: А - Г + Ф. < -> А + Г - Ф, где Г - гликозильная группа, А - акцептор гликозильной группы, Ф- ортофосфат. Известны 7 ферментов, переносящих гексозильные (от полисаха-ридов и дисахаридов), и 8- переносящих пентозильные группы (от нуклеозидов). Обладают высокой степенью специфичности к переносимой гликозильной группе, в отношении акцептора такая специфичность наблюдается не всегда. Ф. имеют универсальное распространение в природе, встречаются у простейших, в животных и растительных тканях. Играют важную роль в живых организмах, катализируя ключевые реакции метаболизма, связанные с использованием запасных углеводов, а следовательно, с обеспечением клеток энергией. Изучение Ф. значительно способствовало развитию энзимологии: на примере фосфо-рилазных реакций была исследована модель макромолекулярного синтеза, связывание фермента с субстратом, алло-стерическая регуляция активности фермента и возможность диссоциации ферментов на субъединицы, каталитич. превращение фермента из неактивной формы в активную. Наиболее хорошо изучены Ф., катализирующие расщепление запасных углеводов - гликогена и крахмала. В. В. Зуевский. ФОСФОРИЛИРОВАНИЕ, замещение атома водорода в молекулах хим. соединений остатком кислот фосфора, чаще всего фосфорной к-ты. Наиболее легко фосфорилируются первичные и вторичные амины, спирты, меркаптаны и др. нуклеофильные соединения. Ф. могут быть подвергнуты также углеводороды (радикальный механизм) и алкилгалогениды (ионный механизм). Фосфорили-рующими агентами служат к-ты фосфора и их производные, чаще всего галоген-ангидриды, ангидриды, реже эфиры, амиды и др. Напр.: ROH + C1P (О) (OR')2 -> ROP (О) (OR')2 + НС1 3R2NH + РСl3 -> P(NR2)3 + 3HC1. При Ф. к-ты фосфора применяют обычно вместе с конденсирующими средствами (напр., карбодиимидами, сульфохло-ридами). Способность к Ф. зависит от валентности фосфора в фосфорилирующем реагенте - более реакционноспособны производные фосфора (III). Ф. широко используется при синтезе негорючих материалов, пластификаторов, эк-страгентов, пестицидов, лекарственных и др. важных веществ. Ф. занимает важнейшее место в обмене веществ и энергии в клетках животных, растений, микроорганизмов. Катализируется ферментами и происходит либо в результате фос- форолиза, либо вследствие фосфокиназных реакций: А-Б + В-H2РО3-> -> А-Н2РО3 + Б-В. где А-Б - молекула, принимающая фосфорильную группу (акцептор), а В-Н2РО3 - молекула, отдающая фосфорильную группу (донор). Донором фосфорильной группы служат молекулы аденозинтрифосфорной к-ты (АТФ) и др. нуклеозидтрифосфатов. В процессе обмена веществ Ф. подвергаются различные низкомолекулярные соединения, а также белки. Ф. а денозинди фосфорной к-ты неорганич. фосфорной к-той служит основным механизмом образования АТФ и аккумуляции энергии, необходимой для процессов биосинтеза, механич., электрич. и осмотич. активностей клеток; осуществляется полиферментными системами за счёт реакций окисления низкомолекулярных органич. соединений либо в анаэробных условиях (гликоли-тическое Ф.), либо кислородом (окислительное фосфорилирование). Ф. аде-нозиндифосфорной к-ты при фотосинтезе с образованием АТФ наз. фотофосфорилированием. Э. Е. Нифантъев, А. Д. Виноградов. ФОСФОРИЛТИОХОЛИНЫ, фосфорилированные аналоги ацетилхолина, [ris] (R, R', R" - алкил).
|