Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Общие сведения. Алгебра - один из больших разделов математики, принадлежащий наряду с арифметикой и геометрией к числу старейших ветвей этой науки






Алгебра - один из больших разделов математики, принадлежащий наряду с арифметикой и геометрией к числу старейших ветвей этой науки. Задачи, а также методы А., отличающие её от др. отраслей математики, создавались постепенно, начиная с древности. А. возникла под влиянием нужд общественной практики, в результате поисков общих приёмов для решения однотипных арифметич. задач. Приёмы эти заключаются обычно в составлении и решении уравнений.

Задачи решения и исследования уравнений оказали большое влияние на развитие первонач. арифметич. понятия числя. С введением в науку отрицательных, иррациональных, комплексных чисел общее исследование свойств этих различных числовых систем тоже отошло к А. При этом в А. сформировались характерные для неё буквенные обозначения, позволившие записать свойства действий над числами в сжатой форме, удобной для построения исчисления над буквенными выражениями. Буквенное исчисление тождественных преобразовав ний, давшее возможность преобразовывать по определённым правилам (отражающим свойства действий) буквенную запись результата действий, составляет аппарат классич. А. Тем самым А. отграничилась от арифметики: А. изучает, пользуясь буквенными обозначениями, общие свойства числовых систем и общие методы решения задач при помощи уравнений; арифметика занимается приёмами вычислений с конкретно заданными числами, а в своих более высоких областях (см. Чисел теория) - более тонкими индивидуальными свойствами чисел. Развитие А., её методов и символики оказало очень большое влияние на развитие более новых областей математики, подготовив, в частности, появление анализа математического. Запись простейших основных понятий анализа, таких, как переменная величина, функция, невозможна без буквенной символики, а в анализе, в частности в дифференциальном и интегральном исчислениях, полностью пользуются аппаратом классич. А. Применение аппарата классич. А. возможно всюду, где приходится иметь дело с операциями, аналогичными сложению и умножению чисел. Эти операции могут производиться при этом и не над числами, а над объектами самой различной природы. Наиболее известным примером такого расширенного применения алгебр, методов является векторная А. (см. Векторное исчисление). Векторы можно складывать, умножать на числа и множить друг на друга двумя различными способами. Свойства этих операций над векторами во многом похожи на свойства сложения и умножения чисел, но в нек-рых отношениях отличны. Напр., векторное произведение двух векторов А и В не коммутативно, т. е. вектор[ris] может не равняться вектору[ris] наоборот, в векторном исчислении действует правило: [ris]

Следом за векторной А. возникла А. тензоров (см. Тензорное исчисление), ставших одним из осн. вспомогат. средств совр. физики. В пределах самой классич. А. возникла А. матриц, а также многие другие алгебр, системы.

Таким образом, А. в более широком, совр. понимании может быть определена как наука о системах объектов той или иной природы, в к-рых установлены операции, по своим свойствам более или менее сходные со сложением и умножением чисел. Такие операции наз. алгебраическими. А. классифицирует системы с заданными на них алгебр, операциями по их свойствам и изучает различные задачи, естественно возникающие в этих системах, включая и задачу решения и исследования уравнений, к-рая в новых системах объектов получает новый смысл (решением уравнения может быть вектор, матрица, оператор и т. д.). Этот новый взгляд на А., вполне оформившийся лишь в 20 в., способствовал дальнейшему расширению

области применения алгебр, методов, в т. ч. и за пределами математики, в частности в физике. Вместе с тем он укрепил связи А. с др. отделами математики и усилил влияние А. на их дальнейшее развитие.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал