Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Угол между плоскостями. Расстояние от точки до плоскости .
Углом между двумя плоскостями и называется угол между нормальными векторами этих плоскостей. Нормальный вектор к данной плоскости может иметь любое из двух противоположных друг другу направлений, поэтому угол между плоскостями определен неоднозначно: для угла возможны два варианта записи: и . Учитывая, что можно косинус угла между плоскостями находить по формуле: , где и любые два вектора, перпендикулярные плоскостям и или Условие параллельности двух плоскостей. Если плоскости и параллельны, то их нормальные вектора коллинеарные. Признаком колленеарности двух векторов является пропорциональность их координат. Условие перпендикулярности двух плоскостей. Плоскости и перпендикулярны, следовательно, их нормальные вектора перпендикулярны ⊥ . Признаком перпендикулярности двух векторов является равенство нулю их скалярного произведения. A1A2 + B1B2 + C1C2 = 0. Расстояние от точки до плоскости Пусть дана точка и плоскость : . Расстояние между ними, то есть длина перпендикуляра, опущенного из точки на плоскость : определяется аналогично расстоянию от точки до прямой.
|