Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнение Бернулли






 

Определение. Уравнением Бернулли называется уравнение вида

где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 1.

Для решения уравнения Бернулли применяют подстановку , с помощью которой, уравнение Бернулли приводится к линейному.

Исходное уравнение делят на :

Используем подстановку, учитывая, что . Находим

; .

Получаем линейное уравнение относительно неизвестной функции z.

Решение этого уравнения будем искать в виде:

, где

Пример. Решить уравнение

Разделим уравнение на :

Полагаем Находим:

.

Полагая будем иметь:

.

Произведя обратную подстановку, получаем:

Пример. Решить уравнение

Разделим обе части уравнения на

Полагаем Находим:

Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:

Интегрируя обе части, получаем:

Полагая , подставляем полученный результат в линейное неоднородное уравнение, учитывая, что

Находим:

Получаем: Применяя обратную подстановку, получаем окончательный ответ:

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал