Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формула полной вероятности
Пусть некоторое событие А может произойти вместе с одним из несовместных событий Теорема. Вероятность события А, которое может произойти вместе с одним из событий
Доказательство. Так как события
Так как события
При этом Пример. Прибор может работать в нормальном и ненормальном режимах. Нормальный режим наблюдается в 80% всех случаев работы прибора, ненормальный - в 20%. Вероятность выхода прибора из строя за время t в нормальном режиме равна 0, 1; в ненормальном- 0, 7. Найти полную вероятность выхода прибора из строя за время t. В данном случае гипотеза
По формуле полной вероятности находим искомую вероятность:
Пример. Завод изготавливает изделия, каждое из которых с вероятностью А - изделие будет забраковано; В - изделие будет забраковано в цехе; С - изделие будет забраковано в ОТК завода. Найдём связь между этими событиями. Событие А, очевидно, произойдёт, если произойдёт событие В или С, причём совместно события В и С произойти не могут По теореме сложения вероятностей: Изделие будет забраковано в цехе, т.е. произойдёт событие В при наличии следующих гипотез:
Для того чтобы изделие было забраковано ОТК завода (произошло событие), необходимо, чтобы это изделие имело дефект, и дефект не был обнаружен в цехе. Поэтому по теореме умножения вероятностей Пример 4. Имеются две партии деталей - в одной 10, а в другой 12 шт., причем в каждой из партий - по одной бракованной. Из первой партии во вторую перекладывают одну деталь. Определить вероятность извлечения из каждой партии бракованной детали до перекладывания и после перекладывания. Пусть событие А - извлечение бракованной детали из первой партии, В - из второй до перекладывания, C и D - те же события после перекладывания. Используя классическое определение вероятности находим: При перекладывании имеются две возможности: Вероятности событий А и С одинаковые, т.е. вероятность извлечь бракованную деталь после перекладывания равна такой же вероятности до перекладывания. Это не случайное совпадение, его можно вывести из классических соображений. Действительно, после извлечения первой детали никакой новой информации не получили, и о второй извлекаемой детали известно лишь, что это одна из 10 деталей, первоначально имевшихся в урне, и из 10 возможностей для этой детали имеется одна, что она бракованная. Поэтому
|