![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Система определения линейной скорости и пути маятника.
Предположим, что нам зачем-то понадобилась информация о значениях линейной скорости маятника и полном пройденном пути. Если это делать непосредственно в описании маятника, то понадобятся всего лишь дополнительные уравнения
Однако, может оказаться, что такой определитель скорости и пути полезен не только для маятников, а для любых движущихся в плоскости объектов. Поэтому мы создадим новый класс «ИзмерительVS», функционирование которого определяется системой уравнений
Однако, он не может быть изолированной системой, точно так же, как и измеряемый объект – текущие координаты этого объекта как-то должны передаваться на блок измерения. Поэтому переменные
а) б) в) Рис 16 Временная диаграмма для скоростей показана на Рис 17.
Рис 17
Каким же образом функционирует компонентная модель? Блоки функционируют параллельно в модельном времени. Это означает, что их главные карты состояний выполняются как параллельные дискретные процессы, а текущие непрерывные поведения – системы уравнений – объединяются в одну глобальную систему уравнений с учетом связей, которые рассматриваются как дополнительные уравнения. В данном случае глобальная система уравнений получается простым механическим сложением системы уравнений движения маятника и системы уравнений измерителя, к которым добавляются два уравнения связей:
а) б) Рис 18 Следует отметить, что функциональные связи – это всего лишь удобный и наглядный способ записи уравнений взаимодействия блоков. Вместо схемы на Рис 16в можно создать блок-контейнер класса «Измерительная_система» (Рис 18а), внутрь него поместить как локальные блоки маятник и измеритель безо всяких связей (Рис 18б), а в качестве непрерывного поведения блока-контейнера поместить те же уравнения связи
Это возможно, поскольку внешние переменные локальных блоков видимы в описании охватывающего блока-контейнера. Таким образом, локальные блоки могут взаимодействовать и помимо явных связей «по воздуху» - через уравнения блока-контейнера. Иногда это может быть удобно. Например, в задаче о взаимодействии
Замечание. Следует помнить, что глобальная система уравнений получается простым механическим сложением системы уравнений компонент только для ориентированных блоков. Для неориентированных блоков получение глобальной системы уравнений является в общем случае непростой задачей.
|