Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Этапы экономико-математического моделирования
Процесс экономико-математического моделирования - это описание социальных и экономических систем и процессов в виде экономико-математических моделей. Данная разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов: · Постановка экономической проблемы и ее качественный анализ; · Построение математической модели; · Математический анализ модели; · Подготовка исходной информации; · Численное решение; · Анализ численных результатов и их применение. Рассмотрим каждый из этапов более подробно. Постановка экономической проблемы и ее качественный анализ. На данном этапе нужно четко сформулированная сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Сначала нужно обозначить важнейшие черты и свойства моделируемого объекта; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих развитие и поведение объекта. Построение математической модели. Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических отношений и зависимостей (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) модели математической, а дальше уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели можно разбить на несколько стадий. Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Лишняя сложность модели затрудняет процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом. Одна из важный особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться «изобретать» модель; сначала необходимо попытаться применить для решения этой задачи уже известные модели. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - это доказательство существования решений в сформулированной модели. Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает и следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственное ли решение, в каких пределах и в зависимости исходных условий они изменяются, какие переменные (неизвестные) могут входить в решение, каковы будут соотношения между ними, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффект от использования дополнительной информации. В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составление программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о полноте и полноте результатов моделирования, о степени практической применимости последних. Математические методы проверки могут выявить некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее математического и информационного обеспечения.
|