Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Импульсы Найквиста






Рассмотрим последовательность информационных импульсов на входе передатчика и последовательность импульсов, получаемую на выходе согласованного фильтра с ха­рактеристикой типа приподнятого косинуса (перед дискретизацией). На рис. 3.21 пе­реданные данные представлены импульсными сигналами, которые появляются в мо- менты времени ,.... Фильтрование приводит к расширению входных сигналов, а следовательно, к запаздыванию их во времени. Время поступления импульсов обозна­чим t0, , t1.... Импульс, переданный в момент времени т0, поступает в приемник в мо­мент времени t0. Хвост, предшествующий основному лепестку демодулированного импульса, называется его предтечей (precursor). Для реальной системы с фиксирован­ным системным эталонным временем принцип причинности предписывает условие t0 , а разность времен 0 - t0 выражает задержку распространения в системе. В дан­ном примере интервал времени от начала предтечи демодулированного импульса и до появления его главного лепестка или максимальной амплитуды равен (утроенное время передачи импульса). Каждый выходящий импульс последовательности накла­дывается на другие импульсы; каждый импульс воздействует на основные лепестки трех предшествующих и трех последующих импульсов. В подобном случае, когда им­пульс фильтруется (формируется) так, что занимает более одного интервала передачи символа, определяется параметр, называемый временем поддержки (support time) им­пульса. Время поддержки — это количество интервалов передачи символа в течение длительности импульса. На рис. 3.21 время поддержки импульса равно 6 интервалам передачи символа (7 информационных точек с 6 интервалами между ними).

Время поддержки импульса Рис.8.2. Фильтрованная последовательность импульсов: выход и вход

 

На рис. 8.2, а показан импульсный отклик фильтра с характеристикой типа корня из приподнятого косинуса (максимальное значение нормированного фильтра равно единице, коэффициент сглаживания фильтра r = 0, 5), а на рис. 8.22, б изображен им­пульсный отклик фильтра с характеристикой типа приподнятого косинуса, называе­мый импульсом Найквиста (нормирование и значение коэффициента сглаживания та­кие же, как и на рис. 3.22, а). Изучая эти два импульса, можно заметить, что они очень похожи. Однако первый имеет несколько более частые переходы, а значит, его спектр (корень квадратный из приподнятого косинуса) не так быстро затухает, как спектр (приподнятый косинус) импульса Найквиста. Еще одним малозаметным, но важным отличием является то, что импульс Найквиста с характеристикой типа корня из приподнятого косинуса не дает нулевой межсимвольной интерференции (можно проверить, что хвосты импульса на рис. 8.22, а не проходят через точку нулевой ам­плитуды в моменты взятия выборок). В то же время, если фильтр с характеристикой типа корня из приподнятого косинуса используется и в передатчике, и в приемнике, произведение передаточных функций двух фильтров дает характеристику типа припод­нятого косинуса, что означает нулевую межсимвольную интерференцию на выходе.

Было бы неплохо рассмотреть, как импульсы Найквиста с характеристикой типа корня из приподнятого косинуса выглядят на выходе передатчика и какую форму они имеют после демодуляциисфильтром, характеристика которого также представляет собой корень из приподнятого

На рис. 8.23, а в качестве примера передачи приведена последовательность символов со­общения {+1 +1 -1 +3 +1 +3} из четверичного набора символов, где алфавит состоит из символов {±1, ±3}. Будем считать, что импульсы модулируются с помощью четверичной кодировки РАМ, а их форма определяется фильтром с характеристикой типа корня из приподнятого косинуса с коэффициентом сглаживания r = 0, 5. Аналоговый сигнал на рис. 3.23, а описывает выход передатчика. Сигнал на выходе (последовательность им­пульсов Найквиста, форма которых получена с выхода фильтра с характеристикой типа корня из приподнятого косинуса) запаздывает относительно сигнала на входе (показанного в виде импульсов), но для удобства визуального представления, чтобы чи­татель мог сравнить выход фильтра с его входом, оба сигнала изображены как одновре­менные. В действительности передается (или модулируется) только аналоговый сигнал.

На рис. 8.23, б показаны те же задержанные символы сообщения, а также сигнал с выхода согласованного фильтра с характеристикой типа корня из приподнятого.

Исследованием проблемы задания формы принятого импульса с тем, чтобы пре­дотвратить появление ISI на детекторе, долгое время занимался Найквист [6]. Он по­казал, что минимальная теоретическая ширина полосы системы, требуемая для детек­тирования символов/секунду без ISI, равна Гц. Это возможно, если передаточ­ная функция системы имеет прямоугольную форму, как показано на рис. 8.16, а. Для низкочастотных систем с такой , что односторонняя ширина полосы фильтра равна (идеальный фильтр Найквиста), импульсная характеристика функции , вычисляемая с помощью обратного преобразования Фурье (см. табл. А.1), имеет вид ; она показана на рис. 3.16, б. Импульс, описываемый функцией , называется идеальным импульсом Найквиста; он имеет бесконечную длитель­ность и состоит из многочисленных лепестков: главного и боковых, именуемых хвостами.

 

косинуса.

-3 -2 -1 0. 1 2 3

Время

Рис.8.22, б. Импульс Найквиста с характери­стикой типа приподнятого косинуса

Поскольку ограничение ширины полосы по Найквисту устанавливает теоретиче­ское максимальное уплотнение скорости передачи символов без межсимвольной интерференции, равное 2 символа/с/Гц, может возникнуть вопрос, можно ли что-то сказать об ограничении величин, измеряемых в бит/с/Гц. О последних ничего нель­зя сказать прямо; ограничение связано только с импульсами или символами и воз­можностью детектирования их амплитудных значений без искажения со стороны других импульсов. При нахождении длялюбой схемы передачи сигналов необ­ходимо знать, сколько битов представляет каждый символ, что само по себе являет­ся темой отдельного рассмотрения. Допустим, сигналы кодируются с использовани­ем М -уровневой кодировки РАМ. Каждый символ (включающий бит) представля­ется одной из М импульсных амплитуд. Для бит на символ размер набора символов составляет амплитуды. Таким образом, при 64-уровневой коди­ровке РАМ теоретическая максимальная эффективность использования полосы, не допускающая межсимвольной интерференции, равна 12 бит/с/Гц. (Подробнее об эф­фективности использования полосы в главе

Найквист установил, что если каждый импульс принятой последовательности имеет вид , импульсы могут детектироваться без межсимвольной интерферен­ции. На рис. 3.16, б показано, как удается обойти ISI. Итак, имеем два последова­тельных импульса, и . Несмотря на то что хвосты функции имеют бес­конечную длительность, из рисунка видно, что в момент взятия выборки функции хвост функции проходит через точку нулевой амплитуды, и подобным образом он будет иметь нулевую амплитуду в моменты взятия выборок всех остальных импульсов последовательности , . Следовательно, предполагая идеальную синхронизацию процесса взятия выборок, получаем, что межсимвольная интерференция не будет влиять на процесс детектирования. Чтобы низкочастотная система могла детектировать таких импульсов (символов) в секунду, ширина ее полосы должна быть равна ; другими словами, система с шириной полосы Гц может поддерживать максимальную скорость передачи символов/с (ограничение полосы по Найквисту) без ISI. Следовательно, при идеальной фильтрации Найквиста (и нулевой межсимвольной интерференции) максимальная возможная скорость передачи символов на герц полосы, называемая уплотнением ско­рости передачи символов (symbol-rate packing), равна

2 символа/с/Гц. Вследствие пря­моугольной формы передаточной функции идеального фильтра Найквиста и беско­нечной длины соответствующего импульса, подобные идеальные фильтры нереализуемы; реализовать их можно только приближенно.



а)

Рис. 8.16. Каналы Найквиста для нулевой межсимвольной интер­ференции: а) прямоугольная передаточная функция системы ; б) принятый импульс

Стоит отметить, что названия " фильтр Найквиста" и " импульс Найквиста" часто используются для описания обширного класса фильтраций и импульсных форм, удов­летворяющих условию нулевой межсимвольной интерференции в точках взятия выбо­рок. Фильтр Найквиста — это фильтр, передаточная функция которого может быть представлена прямоугольной функцией, свернутой с любой четно-симметричной час­тотной функцией. Импульс Найквиста — это импульс, форма которого может быть описана функцией , умноженной на другую временную функцию. Следова­тельно, существует бесконечное множество фильтров Найквиста и соответствующих импульсов. В классе фильтров Найквиста наиболее популярными являются фильтры с характеристикой типа приподнятого косинуса или корня из приподнятого косинуса. Несколько позже эти фильтры будут рассмотрены подробно.

Основным параметром систем связи является эффективность использования полосы, , измеряемая в бит/с/Гц. Как можно понять из единиц измерения, представ­ляет меру скорости переноса данных на единицу ширины полосы, а значит, показы­вает, насколько эффективно любой метод передачи сигналов использует ресурс полосы.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.016 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал