Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Fig.8 The transient processes of control systems.
This general solution has the following form: (1.23) where: - the roots of system characteristic equation ; - integration constants which are defined by initial conditions.
Thus, Eq.(1.23) describes a transient process - the system free movement. A linear control system whose transient process represents the oscillation damping in the course of time (when the amplitude of is continuously diminishing) is called a stable control system according to the following condition: (1.24) If the condition Eq.(1.24) isn’t satisfied then we obtain an unstable control system with the un-damped transient process.
B. The particular solution – the system forced movement component. The 2nd component solution describes the system forced movement in steady-state regime. We assume that a forced input action is a harmonic function: (1.25) where: - a circular frequency of oscillation; - a period of oscillation; - a phase shift. We assume that the phase shift is equal to 0, in this case the input harmonic action will be: (1.26)
|