Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение. Выберем направления токов , и обхода в контуре, составим уравнения по законам Кирхгофа
Выберем направления токов , и обхода в контуре, составим уравнения по законам Кирхгофа. Число уравнений, составляемых по первому закону Кирхгофа: . Число уравнений по второму закону Кирхгофа: . Уравнение токов для узла 1: . (a) Уравнение по второму закону Кирхгофа: . (б) Подставим в уравнения (а) и (б) числовые значения получим: , . Решив эту систему, определим токи и : ; . 7. Расчет сложных электрических цепей давно перестал составлять трудности не только для специалистов, но и для большинства более успевающих студентов электротехнических ВУЗов и техникумов. В настоящее время разработаны программы с графическим интерфейсом, позволяющие буквально за несколько минут рассчитать самую сложную цепь и определить все ее параметры. Однако, в основе программных и " ручных" расчетов лежат методы, разработанные достаточно давно. Эти методы основаны на основных законах электротехники: прежде всего, на законах Ома и Кирхгофа. Одним из наиболее популярных методов расчета сложной цепи является метод контурных токов (далее - КТ). Поговорим о нем подробнее. Основу метода КТ составляет предположение о том, что по каждому замкнутому контуру сложной цепи протекает некий свой КТ. Этот ток, хотя его и можно объявить воображаемым, все же подчиняется известным нам законам: имеет постоянную величину на протяжении всего контура, создает падение напряжения на каждом элементе. Яндекс.Директ
Естественно, в некоторых ветвях цепи будут пересекаться два разных КТ. В таком случае, ток этой ветви будет найден как алгебраическая сумма этих КТ. Ну а в тех ветвях, где протекает всего один КТ, он и будет определять величину тока. Таким образом, для решения задачи методом КТ нам необходимо задаться в каждом контуре своим КТ с произвольным направлением, чаще всего, совпадающим с направлением хода часовой стрелки. Обычно, контуры нумеруются цифрами в порядке от единицы и далее. КТ обозначаются индексом с двойным указанием номера контура, например, I11, I22 и так далее. Это делается для того, чтобы впоследствии не перепутать их с токами в ветвях, которые обозначаются одиночным индексом с номером ветви: I1, I2. После обозначения КТ и присвоения им направления в действие вступает второй закон Кирхгофа. Сумма падений напряжения в каждом контуре равна сумме ЭДС. А падения напряжения находятся как произведение КТ на сопротивление элемента цепи. Причем, если направление КТ совпадает с направлением обхода контура, то значение падения напряжения, вызванного этим током, принимается положительным, а если не совпадает – отрицательным. Та же ситуация и со знаком при ЭДС, имеющихся в контуре и располагающихся в правой части равенства по закону Кирхгофа: если направление ЭДС совпадает с направлением обхода контура, то она положительная, а если не совпадает – отрицательная. Итак, мы получаем уравнения для каждого контура. Число этих уравнений равно числу КТ, то есть числу неизвестных. А это значит, что мы получаем систему уравнений, решить которую можно любым известным способом: методом подстановки, либо методом Гаусса. Главное, что в итоге мы получим значения КТ. Причем, если какие-то из этих значений окажутся отрицательными, то это просто значит, что изначально мы задались неверным направлением для этого КТ. Токи в ветвях найдутся уже именно как суммы КТ, протекающих в этих самых ветвях. Проверку можно выполнить по первому закону Кирхгофа: сумма токов в каждом узле цепи должна быть равна нулю.
Пример решения. Ниже приведем элементарный пример решения сложной цепи по методу КТ. Видно, что в примере есть два контура: 1 и 2. И есть два КТ I11 и I22. Составляем систему уравнений для первого и второго контуров соответственно: I11(R1+Ri1+R3)–I22R3=E1; Решаем эту систему, скажем, методом подстановки: Из первого уравнения: I11=(I22R3+E1)/(R1+Ri1+R3); Из второго уравнения: – ((I22R3+E1)/(R1+Ri1+R3))R3+I22(R2+Ri2+R3)=–E2; Или: I22(R2+Ri2+R3)–(I22R32)/(R1+Ri1+R3)–(E1R3)/(R1+Ri1+R3)=–E2. После расчетов получаем выражение: I22(R2+Ri2+R3–(R32)/(R1+Ri1+R3))=(E1R3)/(R1+Ri1+R3)–E2. Находим I22: I22=((E1R3)/(R1+Ri1+R3)–E2)/(R2+Ri2+R3–(R32)/(R1+Ri1+R3)). Полученное значение подставляем в выражение I11=(I22R3+E1)/(R1+Ri1+R3) и находим I11. Далее находим значения токов в ветвях: I1=I11;
|