Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Многофакторный корреляционно-регрессионный анализ
Задача многофакторного корреляционно-регрессионного анализа заключается: В изучении факторов, которые оказывают влияние на исследуемый показатель и отборе наиболее значимых; В определении степени влияния каждого фактора на результативный признак путем построения модели — уравнения множественной регрессии. Уравнение множественной регрессии позволяет установить, в каком направлении и на какую величину изменится результативный показатель при изменении каждого фактора входящего в модель; В количественной оценке тесноты связи между результативным признаком и факторными. Математически задача состоит в нахождении функции От правильного выбора функции регрессии зависят результаты теоретического анализа и возможность их применения на практике. Построение моделей множественной регрессии включает следующие этапы: Выбор формы связи (уравнения регрессии) путем перебора нескольких аналитических функций; Отбор значимых факторных признаков (опирается на сравнение частных коэффициентов эластичности, b-коэффициентов, D-частных коэффициентов детерминации); Обеспечение достаточного объема совокупности для получения несмещенных оценок (их количество должно быть в несколько раз больше, чем число факторов, включаемых в модель. На каждый фактор должно приходиться, как минимум, 5-6 наблюдений. Сложность выбора функции состоит в том, что результативный признак с разными факторами может находиться в различных формах связи— прямолинейных и криволинейных. Эмпирическое обоснование типа функции с помощью графиков парных связей практически непригодно для множественной корреляции и регрессии. Выбор формы уравнения множественной регрессии основывается на теоретическом анализе изучаемого явления. Практика многофакторного регрессионного анализа социально-экономических явлений показывает, что для описания их взаимосвязей можно использовать пять типов моделей: линейная степенная показательная параболическая гиперболическая Чаще всего останавливаются на линейных моделях. Это объясняется тем, что параметры линейных уравнений легко интерпретируются, а сами модели просты и удобны для экономического анализа. Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена используя сравнительный анализ частных коэффициентов эластичности Эi, b-коэффициентов и частных коэффициентов детерминации Di. Рассмотрим принципы анализа степени влияния факторов на примере, когда в уравнение регрессии были включены пять факторов (табл. 1). Если сопоставить значения коэффициентов эластичности (графы 2 и 5 табл. 1), то можно видеть, что главным фактором изменения результативного показателя является фактор х5; при его изменении на 1% у возрастает на 79, 5%. Вторым по силе влияния на результативный показатель является фактор х1 и т.д. (графа 5). Сравнение значений bj позволяет сделать вывод, что наибольший вклад в изменение результативного признака вносят факторы х5, х4 и х1 (графа 6 табл. 1) Сопоставление значений коэффициентов Dj, позволяет сделать вывод, что наибольшую долю влияния имеет фактор х5: роль этого фактора в вариации результативного показателя составляет 52, 5% общего влияния пяти факторов на результативный показатель. Доля влияния других факторов значительно уступает доле влияния фактора х5. Следовательно, наибольшие возможности в изменении результативного показателя связаны с изменением фактора х5, затем х1 и далее х4.. Таблица 1
Также часто используется метод пошаговой регрессии, состоящий в последовательном включении факторов в модель и оценке их значимости. Факторы поочередно вводятся в уравнение. При введении фактора определяется, насколько увеличивается величина множественного коэффициента корреляции R. Если при включении в модель фактора xiвеличина R увеличивается, а коэффициент регрессии аi не изменяется или меняется незначительно, то данный фактор существенен и его включение в модель необходимо. Одновременно используется и обратный метод, т.е. исключение факторов, ставших незначимыми на основе t-критерия Стьюдента. Наличие между двумя факторами весьма тесной линейной связи (линейный коэффициент корреляции г превышает по абсолютной величине 0, 85) называется коллинеарностью, а между несколькими факторами — мультиколлинеарностью. Причины возникновения мультиколлинеарности между признаками состоят, во-первых, в том, что анализируемые признаки характеризуют одну и ту же сторону явления или процесса (например, уставной фонд и численность работников характеризуют размер предприятия) и включать их в модель одновременно не целесообразно; во-вторых, факторные признаки являются составными элементами друг друга, дублируют друг друга или их суммарное значение дает постоянную величину (например, энерговооруженность и фондовооруженность, удельный вес заемных и собственных средств). Если в модель включены мультиколлинеарные факторы, то уравнение регрессии будет неадекватно отражать реальные взаимосвязи, будут искажены величины параметров модели (завышены) и затруднена экономическая интерпретация коэффициентов регрессии и корреляции. Поэтому при построении модели исключают один из коллинеарных факторов исходя из качественного и логического анализа. В уравнении множественной регрессии в линейной форме параметры а1, а2, аз,..., аn — коэффициенты регрессии, показывают степень влияния соответствующих факторов на результативный признак при закреплении остальных факторов на среднем уровне, т.е. насколько изменится у при увеличении соответствующего фактора xi на 1 пункт его единицы изменения; параметр а0 — свободный член, экономического смысла не имеет. Параметры уравнения множественной регрессии, как и парной, рассчитываются методом наименьших квадратов на основе решения системы нормальных уравнений. Для линейного уравнения регрессии с п факторами строится система из (n+1) нормальных уравнений:
Поскольку коэффициенты регрессии между собой несопоставимы (факторы имеют разные единицы измерения), то нельзя сравнивать силу влияния каждого фактора на результативный признак на основании коэффициентов регрессии.
|