Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Задача 2. Исследовать функцию и построить ее график.
Исследовать функцию и построить ее график. Решение. Исследование функции проведем по следующей схеме:
Реализуем указанную схему:
2. Данная функция является элементарной, поэтому она непрерывна на своей области определения, т.е. на интервалах и . В точке функция терпит разрыв второго рода. 3. Для установления четности или нечетности функции проверим выполнимость равенств (тогда – четная функция) или (для нечетной функции) для любых х и – х из области определения функции: . Следовательно, и , то есть данная функция не является ни четной, ни нечетной. 4. Для исследования функции на экстремум найдем ее первую производную: . при и – не существует при . Тем самым имеем две критические точки: . Но точка не принадлежит области определения функции, экстремума в ней быть не может. Разобьем числовую ось на три интервала (рис. 5): , . В первом и третьем интервалах первая производная отрицательна, следовательно, здесь функция убывает; во втором интервале – положительна и данная функция возрастает. При переходе через точку первая производная меняет свой знак с минуса на плюс, поэтому в этой точке функция имеет минимум: . Значит, – точка минимума. Нарис. 5 знаками +, – указаны интервалы знакопостоянства производной у', а стрелками – возрастание и убывание исследуемой функции. 5. Для определения точек перегиба графика функции и интервалов выпуклости и вогнутости кривой найдем вторую производную: . при и – не существует при . Разобьем числовую ось на три интервала (рис. 6): , . На первом интервале вторая производная отрицательна и дуга исследуемой кривой выпукла; на втором и третьем интервалах , тем самым график является вогнутым. При переходе через точку меняет свой знак, поэтому – абсцисса точки перегиба. Следовательно, – точка перегиба графика функции.
6. – точка разрыва функции, причем . Поэтому прямая является вертикальной асимптотой графика. Для определения уравнения наклонной асимптоты воспользуемся формулами: . Тогда При вычислении последнего предела использовалось правило Лопиталя. Значит прямая есть горизонтальная асимптота графика исследуемой функции, представленного на рис. 7.
|