Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Влияние солей натрия и кальция на вязкость молока при 200С
Добавление к молоку перекиси водорода также приводит к возрастанию его вязкости (табл. 7). Вязкость указанная в табл. 6 и 7 получена на реовискозиметре Гепплера. На формирование структуры молочного продукта в основном оказывает влияние молочный белок – казеин, денатурирующий вплоть до коагуляции при действии кислот (например, при нарастании кислотности), свертывающийся под действием протеолитических ферментов (например, сычужного). При больших концентрациях и высоких значениях рН казеин образует прочные структуры. На основании классификации пространственных структурированных систем, данной П.А. Ребиндером, структуру, возникающую в системе казеин-вода, можно определить как коагуляционно-конденсационную (смешанный тип структуры). Таблица 6 Таблица 7
Из-за наличия устойчивых прослоек жидкой среды в участках коагуляционного сцепления, препятствующих дальнейшему сближению частиц, коагуляционные структуры обладают характерными механическими свойствами. Это – структурная вязкость, а в более концентрированных дисперсиях (пастах) – явная пластичность. С наличием тонких адсорбционно- пластифицирующих прослоек среды в контактах между частицами связана и полная тиксотропия коагуляционных структур – их способность обратимо разрушаться при механических воздействиях, постепенно восстанавливаясь во времени до той же предельной прочности в результате броуновских соударений частиц по коагуляционным участкам. Тиксотропия коагуляционных структур позволяет в условиях практически однородного сдвига (например, в ротационных вискозиметрах с коаксиальными цилиндрами с узким зазором) получать полные реологические кривые зависимости эффективной вязкости от напряжения сдвига, т.е. от равновесной степени разрушения структуры в стационарном потоке. Такие зависимости были установлены А.А. Трапезниковым. Им исследованы образцы ацидофилина, простокваши и кефира. По своим реологическим характеристикам эти продукты различаются довольно сильно. Кефир по сравнению с другими молочными продуктами – наименее структурированная система. В такой системе имеет место прочностная тиксотропия. Неспособность структуры ацидофилина к тиксотропному восстановлению указывает на то, что она образуется в результате коагуляции и склонна к синерезису. Механическое воздействие ускоряет синерезис. Структура простокваши менее прочна, чем структура ацидофилина, но комплексы свойств простокваши и ацидофилина в общем аналогичны. Несмотря на некоторые расхождения в абсолютных значениях реологических величин, общие закономерности сохраняются для каждого вида кисломолочного продукта. Вязкость молочных продуктов можно представить как сумму вязкости дисперсионной среды и дисперсной фазы, а также приращение вязкости вследствие образования структуры: η = 0, 69 10 -3 exp (19000 Т*/R)· · , (1) где Т* - избыточная обратная абсолютная температура, 1/К; R - универсальная газовая постоянная, 8, 314 Дж/(моль К); ύ д ф - объемная концентрация дисперсной фазы, м3/ м3.
Член, стоящий перед фигурной скобкой, характеризует изменение вязкости воды в зависимости от температуры; 4, 5 ύ д ф - поправка на дисперсную фазу; второй комплекс в фигурных скобках учитывает приращение вязкости за счет структуры. И. Кайрюкштене (Вильнюс) были исследованы структурно- механические свойства кислотных и сычужных сгустков пахты, полученной при разных способах производства масла. Вязкость сгустков, полученных путем сквашивания с закваской молочнокислых культур, определяли реовискометром Гепплера, измерения проводили при 20 0С кюветой 0, 1. Определяли начальную вязкость (η н), вязкость разрушенной структуры (η р) и вязкость после восстановления (η в). Эти показатели позволили рассчитать коэффициенты потери вязкости Пη и восстановления структуры Вη после механического воздействия. Продолжительность сычужного свертывания и другие показатели сычужных сгустков определяли на тромбоэластографе. Были исследованы кислотные и сычужные сгустки из пахты типа А, полученной при выработке масла методом периодического сбивания, пахты типа Б, полученной при выработке масла методом непрерывного сбивания, и пахты типа В – при выработке масла методом преобразования высокожирных сливок. Пахта типа А была более богата жиром и белком. Пахта типа В по содержанию СОМО и плотности была наиболее близка к обезжиренному молоку.
По вязкости кислотные сгустки очень отличаются (табл. 8). Наибольшую начальную вязкость имел сгусток из пахты типа В (1, 9·10-3 Па·с), самую меньшую – сгусток из пахты типа А (12, 3·10-3 Па·с). Потеря вязкости в результате механического воздействия была самой большой у сгустков из пахты типа В (75 %), восстановление структуры которого составляет 38, 5 %. При сравнении структурно-механических свойств кислотных сгустков пахты и обезжиренного молока установлено, что пахта образует кислотный сгусток, значительно отличающийся от сгустка обезжиренного молока. Начальная вязкость сгустка в зависимости от типа пахты в 6-17 раз меньше вязкости сгустка обезжиренного молока. Эти сгустки значительно меньше разрушались и восстанавливали больше структурных связей. Надо отметить, что хотя кислотные сгустки пахты типа В по своим структурно-механическим свойствам были гораздо ближе к сгусткам обезжиренного молока, но от них отличались.
Таблица 8
|