Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Реологические показатели термизированных йогуртных продуктов на основе разработанной структурообразующей добавки
В йогуртных продуктах, выработанных в производственных условиях с использованием предложенных рецептур, были определены физико-химические и органолептические показатели. Структурно-механические свойства кисломолочного продукта определяли с использованием ротационного вискозиметра «Reotest-2». В результате установлено, что йогурт, приготовленный с использованием разработанной структурообразующей добавки, не уступает по своим структурно-механическим и органолептическим характеристикам продуктам, содержащим стабилизатор фирмы НАНN, а ее применение позволяет снизить себестоимость готового продукта на 12 %. К.К. Полянским, Н.С. Родионовой изучены реологические свойства молочной композиционной основы для производства лечебно- профилактических структурированных продуктов с использованием пектинсодержащих компонентов. Пектин (ГОСТ 29186-91) после набухания в количестве 0, 2-1, 0 % вносили в обезжиренное молоко, полученную смесь подвергали тепловой обработке, затем охлаждали до (20 2) 0С. Реологические характеристики (вязкость, текучесть) определяли с помощью прибора «Реотест-2». Анализ полученных зависимостей кривых течения от касательного напряжения и динамической вязкости от градиента скорости исследуемых молочно-пектиновых систем показал наличие трех условных групп образцов, обладающих различными реологическими характеристиками. Первая группа образцов с массовой долей пектина 0, 2-0, 4 % характеризуется линейной зависимостью градиента скорости от касательного напряжения, что свидетельствует о мгновенном разрушении структуры и позволяет отнести эти образцы к ньютоновским жидкостям. Изучение процессов развития микрофлоры в них показало возможность разработки технологии лечебно-профилактических напитков с массовой долей пектина 0, 4 % с увеличенным сроком хранения от 10 до 14 суток. Для второй группы молочно-пектиновых систем с массовой долей пектина 0, 5-0, 7 % характерно отклонение от линейной зависимости градиента скорости относительно касательного напряжения, что позволяет отнести их к структурированным, легко разрушимым продуктам, обладающим тиксотропными свойствами. На основе данных композиционных систем целесообразно разработать ассортимент лечебно-профилактических структурированных продуктов десертного назначения: йогуртов, соусов, майонезов и т.д. Третья группа образцов с массовой долей пектина от 0, 8 % до 1 % характеризуется нелинейной зависимостью градиента скорости от касательного напряжения, т.е. обладает коагуляционно-конденсационной структурой. На основе этой системы возможно производство структурированных продуктов: пудингов, желе, кремов. Дальнейшее увеличение массовой доли пектина вызывало разделение системы на концентрат казеина и концентрат структурирующий пищевой. Таким образом, на основании полученных результатов определены интервалы массовой доли вносимого пектина, определяющие реологические характеристики композиционной основы для производства трех групп продуктов лечебно-профилактического назначения: напитков, йогуртов, соусов, пудингов, суфле, кремов. Вязкость кефира. В процессе производства кефира реологические методы исследования можно применять как для контроля качества продукта в процессе его приготовления, так и для оценки качества готового продукта. Установлено, что с изменением рН среды, накоплением продуктов брожения, характеризующих вкус кефира, изменяются структурно-механические свойства продукта. При изменении рН от 4 до 5, 2 вязкость (Па·с), измеренная с помощью реовискозиетра Гепплера при напряжении сдвига 2 Па, уменьшается по экспоненциальному закону: η = 2000 exp (-2, 5 рН), (17) При рН больше 5, 6 вязкость практически составляет 3, 5·10 -3 Па·с. Качество продукта во многом определяется своевременным прекращением процессов сквашивания и перемешивания. Для получения кефира хорошего вкуса и нужной консистенции его надо перемешивать при рН 4, 4-4, 5, когда продукт имеет структуру высокой прочности, которая сохраняет свои свойства при последующем механическом воздействии и в процессе хранения. Вязкость хорошего кефира должна быть 2, 9-3, 2 Па с при касательном напряжении 980 Па или 1, 6-1, 9 Па с при касательном напряжении 1960 Па. В процессе хранения при пониженных температурах в кефире может происходить отделение сыворотки. Однако если вязкость кефира выше 2, 4 Па с при касательном напряжении 980 Па, то сыворотка отделяться не будет. Таким образом, контролируя в процессе производства кефира только рН и вязкость, можно получить продукт высокого качества. Влияние некоторых технологических факторов на реологические свойства кисломолочных продуктов качественно можно оценить следующим образом. Упругость сгустка возрастает с увеличением содержания жира до 21 %, затем уменьшается. Аналогично происходит процесс отделения сыворотки. Подобное влияние оказывает и увеличение содержания сухих веществ. Режимы пастеризации почти не влияют рН. Повышение температуры пастеризации увеличивает упругость сгустка, а длительная пастеризация уменьшает ее. Оптимальное давление гомогенизации 200 105 Па при температуре 85 0С для молока и 75 0С для сливок. Упругость сгустка и вязкость имеют максимальные значения без перемешивания и при перемешивании через 5 ч после инкубации, когда молоко еще остается жидким. При перемешивании степень отделения сыворотки возрастала. Разработаны технические условия и технологическая инструкция по производству пасты «Кэндилак» из молочной сыворотки, предназначенной для использования в качестве компонента – обогатителя при выработке плавленых сыров. Паста представляет собой структурированную дисперсную систему с псевдопластическими свойствами. Реограммы носят экспоненциально-убывающий характер с более выраженным аномальным проявлением вязкости при низкой температуре. Реологическая кривая описывается степенным уравнением течения псевдопластического материала Оствальда-де Вале с величиной достоверности аппроксимации R2 = 0, 986: Р = 101, 4 0, 382, (18) где Р - касательное напряжение сдвига, Н/м2; - градиент скорости сдвига, с-1. Поскольку в уравнении индекс течения (показатель степени) значительно меньше единицы (0, 382), это означает, что при температуре 20 0С эффективная вязкость пасты уменьшается с повышением скорости сдвига. При 40 0С зависимость выражается линейным уравнением и паста проявляет свойства ньютоновской вязкой жидкости. Предельное напряжение сдвига при 20 0С составляет 17-30 кПа. Свойство пасты переходить в жидкое состояние при нагревании до 40-50 0С позволяет ее перефасовывать, дозировать или смешивать с другими компонентами. При этом первоначальные псевдопластические свойства восстанавливаются при охлаждении до 18-22 0С. Комплексные исследования сывороточной пасты «Кэндилак» подтвердили ее пищевую безвредность и возможность применения при производстве пищевых продуктов. Обладая высоким осмотическим давлением, паста устойчива к действию микроорганизмов. Срок хранения в герметичной упаковке для сгущенных молочных продуктов при температуре не выше 25 0С – 6 месяцев, при контакте с воздухом возможно некоторое потемнение поверхностного слоя. Вязкость сгущенных молочных продуктов. Вязкость уменьшается с повышением температуры, увеличивается с повышением концентрации сухих веществ. Высокотемпературная обработка также приводит к повышению вязкости (см. табл. 2). Сгущенное цельное молоко и обезжиренное молоко без сахара при концентрации сухих веществ до 0, 45 кг на 1 кг сгущенного молока (45%) проявляет малую аномалию вязкости. Для вычисления вязкости несгущенного и сгущенного молока в зависимости от температуры удобно пользоваться формулами. Например, для молока с φ =0, 032 кг жира на 1 кг молока (3, 2 %) ТПР = 295 К и η п р = 1, 65 10 -3 Па с. Температура приведения и соответствующее ей значение вязкости сгущенного обезжиренного молока зависят от содержания СОМО: ТПР = 293 + 267 (СОМО)2, (19)
lg (ν п р 10 6) = 2, 34 СОМО – 0, 168, (20)
Формула 20 действительна для молока с содержанием СОМО от 0, 10 до 0, 20. При содержании СОМО в молоке от 0, 08 до 0, 10 ν пр изменяется от 1, 96·10 -6 до 2·10 - 6 м2/с. Вязкость обезжиренного молока, сгущенного посредством ультрафильтрации, может быть вычислена по формуле: η 103 = 660 с 2, 24 + 1, 71, (21) где с – концентрация белка, кг белка на 1 кг продукта. Формула 21 действительна при с < 0, 15 и t = 20 0С. Значения вязкости, рассчитанные по формуле 21, приведены в табл. 22. Таблица 22
|