Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Полигон и гистограмма
Для наглядности строят различные графики статистического распределения, в частности, полигон и гистограмму. Определение. Полигоном частот называют ломаную, отрезки которой соединяют точки (x1, n1), (x2, n2), …, (xk, nk). Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат – соответствующие им частоты ni. Точки (xi, ni) соединяют отрезками прямых и получают полигон частот. Определение. Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x1, w1), (x2, w2), …, (xk, wk). Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат wi. Точки (xi, wi) соединяют отрезками прямых и получают полигон относительных частот. На рисунке изображен полигон относительных частот следующего распределения:
Рис. 6. Полигон относительных частот. В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длинной h и находят для каждого частичного интервала ni – сумму частот вариант, попавших в i-ый интервал. Определение. Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению (плотность частоты). Рис. 7. Гистограмма частот. Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс, на расстоянии . Площадь i-го частичного прямоугольника равна = ─ сумме частот вариант i-го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, то есть объему выборки n. На рисунке 2 изображена гистограмма частот распределения объема n=100, приведенного в таблице 1.
Определение. Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длинною h, а высоты равны отношению (плотность относительной частоты). Для построения гистограммы относительных частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии . Площадь i-го частичного прямоугольника равна = ─ относительной частоте вариант, попавших в i-й интервал. Следовательно, площадь гистограммы относительных частот равна сумме всех относительных частот, то есть единице. Примеры. 1. В результате выборки получена следующая таблица распределения частот. Построить полигоны частот и относительных частот распределения. Для начала построим полигон частот. Рис. 8. Полигон частот. Чтобы построить полигон относительных частот найдем относительные частоты, для чего разделим частоты на объем выборки n. n = 3 + 10 + 7 = 20. . Получаем
Построим полигон относительных частот. Рис. 9. Полигон относительных частот. 2. Построить гистограммы частот и относительных частот распределения. Найдем плотность частоты :
Построим гистограмму частот.
Рис. 10. Гистограмма частот.
Чтобы построить гистограмму относительных частот, нужно найти относительные частоты. Для этого найдем объем выборки n. . Теперь найдем относительные частоты : Получим:
Плотности частот нужно вычислить. При этом h = 3. Построим гистограмму относительных частот. Рис.11. Гистограмма относительных частот.
|