Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Элементы теории корреляции
Определение. Зависимость двухслучайных величин называют корреляционной, если изменение одной случайной величины приводит к изменению среднего значения другой случайной величины. Основные задачи теории корреляции: 1. определить есть ли связь между случайными величинами, если есть, то найти уравнение зависимости (уравнение регрессии); 2. определить силу (тесноту) связи между случайными величинами. Для определения самого факта связи между случайными величинами и тесноты связи служит коэффициент корреляции. Уравнение регрессии позволяет предсказать, какие изменения в среднем будет претерпевать признак при изменении другого признака. Если уравнения регрессии являются линейными, то есть графиками будут прямые линии, то корреляционная зависимость называется линейной. Выборочный коэффициент корреляции
Свойства выборочного коэффициента корреляции: 1. Значения коэффициента корреляции изменяются на отрезке [–1; 1]:
2. Чем модуль 3. Если 4. Если 5. Если Выборочное уравнение прямой регрессии Y на X имеет вид:
где
Выборочное уравнение прямой регрессии X на Y имеет вид:
Пример. Были произведены измерения общей длины ствола в см (X) и длины его части без ветвей (Y) 10 молодых сосен. Результаты этого измерения представлены в таблице:
Вычислить выборочный коэффициент корреляции и найти выборочное уравнение прямой регрессии Y на X. Решение. Вычислим выборочный коэффициент корреляции по формуле:
Для вычисления величин, входящих в формулу, составим вспомогательную таблицу (приведена на следующей странице), в которой результаты измерений записаны столбцами. Внизу каждого из столбцов вычислены суммы для нахождения средних yi– Находим средние
Выполнив все вычисления в таблице (3 – 7 столбцы), получаем: Σ (xi– Σ (xi– Σ (yi– Подставляя эти значения в соответствующую формулу, вычислим коэффициент корреляции:
Таким образом, у выбранных сосен имеет место очень сильная корреляция между общей длиной ствола и длиной его части без ветвей. Найдем теперь выборочное уравнение прямой регрессии Y на X.
где Тогда σ y/σ x= Подставляя в выборочное уравнение прямой регрессии Y на X: Окончательно, y=0, 18x + 10, 4 – искомое уравнение прямой регрессии Y на X.
|