Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.
В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного. Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю: . Достаточное условие идентификации для данного уравнения выполняется. Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю: . Достаточное условие идентификации для данного уравнения выполняется. Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю: . Достаточное условие идентификации для данного уравнения выполняется. Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом: Варианты индивидуальных заданий Даны системы эконометрических уравнений.
|