Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 1. Уравнение состояния идеального газа.
Состояние системы задается термодинамическими параметрами – совокупностью физических величин, характеризующих свойства термодинамической системы, например, давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния. Для идеального газа уравнением состояния является уравнение Клапейрона – Менделеева: , где m – масса газа, – молярная масса (масса одного моля вещества), – количество вещества, R – универсальная газовая постоянная, . (Идеальным называется такой газ, в котором считается, что собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда, в котором он находится, силы взаимодействия между молекулами газа отсутствуют, а столкновения между молекулами газа абсолютно упругие.) Исходя из уравнения Клапейрона – Менделеева и понятия концентрации n (n – число молекул в единице объема: , где N – число всех молекул газа), можно получить уравнение состояния идеального газа в ином виде: , то есть , где – постоянная Авогадро – число молекул в одном моле вещества, , – постоянная Больцмана.
|