Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Рунге-Кутта






Наиболее распространеннымв практике интегрирования обыкновенных дифференциальных уравнения является метод Рунге-Кутта. При его использовании решение уравнений представляется в виде итерационных формул Рунге-Кутта.

Пусть дано уравнение

,

удовлетворяющее начальному условию .

Выберем достаточно малый шаг и построим систему равноотстоящих точек:

, .

Рассмотрим метод Рунге-Кутта четвертого порядка:

,

где

,

,

,

.

Достоинством метода Рунге-Кутта является то, что при его использовании нет необходимости вычислять производные выше первого порядка, аосновные недостатки – громоздкость и значительный объем вычислений на каждом шаге.

Алгоритм численного интегрирования

дифференциальных уравнений методом Рунге-Кутта

Вданной задаче исходная система уравнений имеет вид:

,

с начальными условиями , .

Сопряженная система уравнений:

,

с граничными условиями , .

Зададим начальные условия , .

1. Для интегрирования уравнений в интервале времени от t до разобьем интервал на Р частей с шагом .

2. Пусть . Определяем значение .

3. Для уравнений исходной и сопряженной систем определяем величины: , , , ; , , , ; , , , ; , , , .

Для уравнения :

,

,

,

.

Для уравнения :

,

,

,

.

Для уравнения :

,

,

,

.

Для уравнения :

,

,

,

.

4. Далее вычисляем:

,

,

,

.

5. Процедуру вычисления значений , , , повторяем при последующих значениях .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал