Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основания геометрии Лобачевского и её интерпретацииСтр 1 из 7Следующая ⇒
Псевдосферические поверхности Возникновение в геометрии псевдосферических поверхностей – поверхностей постоянной отрицательной кривизны
Основания геометрии Лобачевского и её интерпретации Геометрия, открытая Лобачевским, явилась венцом многовековых попыток доказательства корректности принятой в привычной для нас евклидовой геометрии аксиомы о параллельных, известной также как V постулат Евклида: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. Исторически в мировоззренческом восприятии математиков приведенная аксиома воспринималась несколько сложным, перегруженным утверждением, лежащим в основе всей известной к тому времени геометрии. Поэтому довольно естественными на протяжении многих веков начиная фактически с начала нашей эры представлялись попытки доказательства V постулата Евклида как следствия других имеющихся аксиоматических утверждений. Исследованием этой проблемы, например, занимались древнегреческие математики Птолемей (II в.) и Прокл (V в.), Ибн аль-Хайсам из Ирака (конец X – начало XI в.), таджикский мыслитель Омар Хайям (вторая половина XI – начало XII в.), а также плеяда европейских математиков: К. Клавий (1574 г.), П. Катальди (1603 г.), Дж. Борелли (1658 г.), Дж. Витале (1680 г.), Дж. Валлис (1693 г.), Дж. Саккери (1733 г.), А. Лежандр (1800 г.), Ф. Швейкарт (1818 г.), Ф. Тауринус (1825 г.). Однако окончательный математически абсолютно строгий результат по “проблеме V постулата” принадлежит Н.И. Лобачевскому и заключается в том, что V постулат Евклида не может быть доказан на основе других принятых аксиоматических предположений евклидовой геометрии. И более того, допущение иного постулата, противоположного по смыслу аксиоме о параллельных, приводит к построению новой геометрии, столь же содержательной, как и евклидова. Научное сообщение об открытии новой геометрии было сделано Н.И. Лобачевским в Казанском университете в 1826 г., а сама работа “О началах геометрии” опубликована им в 1829–1830 гг. В основе новой геометрии, называемой теперь геометрией Лобачевского, вместо V постулата Евклида принята следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие ее (содержание этого положения символически показано в приложении №1, А). Новую геометрию, которую Лобачевский называл воображаемой геометрией, уже сам автор рассматривал как возможную теорию пространственных отношений. Но окончательное утверждение геометрии Лобачевского как системы пространственных соотношений пришло позднее, когда были предложены ее наглядные интерпретации и тем самым полностью решен вопрос о ее реальном смысле. Построение модельных интерпретаций геометрии Лобачевского на обычной плоскости связано с идеями А. Пуанкаре, Кели, Ф. Клейна. Остановимся подробно на интерпретации Пуанкаре (1868 г.) (Приложение №1, Б). Плоскостью Лобачевского Открытие и последующее исследование геометрических объектов, наиболее полно и естественно представляющих неевклидову гиперболическую геометрию в трёхмерном евклидовом пространстве, связаны с именами Ф. Миндинга, Э. Бельтрами, У. Дини и др., построивших и детально изучивших ряд поверхностей постоянной отрицательной гауссовой кривизны
|