Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Плотность распределения отказов (ПРО)
Статистическая оценка ПРО определяется отношением числа объектов n(t, t + t), отказавших в интервале наработки [t, t + t] к произведению общего числа объектов N на длительность интервала наработки t.
4. Расчет показателей надежности? По результатам испытаний N невосстанавливаемых одинаковых объектов получена статистическая выборка – массив наработки (в любых единицах измерения) до отказа каждого из N испытывавшихся объектов. Выборка характеризует случайную величину наработки до отказа объекта T = {t}. Необходимо выбрать закон распределения случайной величины T и проверить правильность выбора по соответствующему критерию.Подбор закона распределения осуществляется на основе аппроксимации (сглаживания) экспериментальных данных о наработке до отказа, которые должны быть представлены в наиболее компактном графическом виде. Выбор той или иной аппроксимирующей функции носит характер гипотезы, которую выдвигает исследователь. Экспериментальные данные могут с большим или меньшим правдоподобием подтверждать или не подтверждать справедливость той или иной гипотезы. Поэтому исследователь должен получить ответ на вопрос: согласуются ли результаты эксперимента с гипотезой о том, что случайная величина наработки подчинена выбранному им закону распределения? Ответ на этот вопрос дается в результате расчета специальных критериев.При большом числе испытываемых объектов полученный массив наработок {…, ti, …} является громоздкой и мало наглядной формой записи случайной величины T. Поэтому для компактности и наглядности выборка представляется в графическом изображении статистического ряда – гистограмме наработки до отказа. Для этого необходимо: - установить интервал наработки [tmin, tmax] и его длину , где - разбить интервал наработки [tmin, tmax] на k интервалов равной ширины t – шаг гистограммы - подсчитать частоты появления отказов во всех k интервалах где n(ti, ti + t) – число объектов, отказавших в интервале [ti, ti + t]. Очевидно, что - полученный статистический ряд представляется в виде гистограммы, которая строится следующим образом. По оси абсцисс (t) откладываются интервалы t, на каждом из которых, как на основании, строится прямоугольник, высота которого пропорциональна (в выбранном масштабе) соответствующей частоте.
|