Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Автономные системы, символические уравнения Вопрос 2






Общей теории нелинейных систем нет, поэтому рассматривают частные случаи, например, если система содержит безынерциальный нелинейный элемент и линейную инерциальную подсистему. На рис. 7 показана такая система, для которой

Рис. 7. ,   , где f - некоторая функция, - линейный дифференциальный оператор.

Для анализа этой системы (для составления описывающего её уравнения) можно воспользоваться методом символических уравнений. Для этого формально записываются законы Кирхгофа в операторной форме, но вместо изображений токов и напряжений по Лапласу записываются их линейные значения, причём линейные элементы описываются операторным сопротивлением, а нелинейные - своей ВАХ. Полученные уравнения рассматриваются как алгебраические относительно p и преобразовываются так, чтобы p не было в знаменателе; после p заменяется оператором дифференцирования, т. е. .

Применим это правило к генератору на туннельном диоде (рис. 8). Чтобы пошла генерация, необходимо рабочую точку вынести в область отрицательного дифференциального сопротивления (как показано на рис. 9).

Рис. 8. Генератор на туннельном диоде. Рис. 9. ВАХ туннельного диода.

Будем действовать по правилу, составим формальное уравнение:

.

Найдём операторное сопротивление контура (линейной инерциальной подсистемы), обведённого штриховой линией на рис. 8: здесь последовательное соединение индуктивности и сопротивления в параллель с конденсатором, т. е.

.

Введём другие обобщённые координаты (относительно рабочей точки):

,

тогда можно записать:

. (1.13)

Символическое уравнение цепи в общем случае имеет вид:

, (1.14)

т. е. полученное уравнение (1.13) удовлетворяет условию (1.14). Дальше получаем ДУ:

;

причём, так как генератор будет работать в области выбранной нами рабочей точки, то можно приблизительно заменить i (u) на i 0, тогда

.

Рассмотрим генератор на транзисторе, представленный на рис. 10. Линейной подсистемой в

Рис. 10. Генератор на транзисторе. этом генераторе является резонансный контур. Запишем несколько соотношений, которые легко получаются, если немного приглядеться к схеме: , , ; и сведём их к одному уравнению: . Из последнего уравнения следует равенство:
. (1.15)
Как видно, уравнения (1.15) и (1.13) похожи - это один из примеров изоморфизма колебательных систем, поэтому можно зарисовать обобщённую структуру генератора (рис. 11). Часто вместо Z (p) используют так

называемую трёхточечную схему (рис. 12). В этом случае общее уравнение генератора на управляемом источнике, охваченного обратной связью через линейный четырёхполюсник (рис. 11) имеет вид:

, (1.16)

где (для трёхточечной схемы) операторное сопротивление:

. (1.17)

В качестве примеров рассмотрим генератор с автотрансформаторной связью (рис. 13) и схему Колпитца (рис. 14). Подставив соответствующие Z 1(p), Z 2(p) и Z 3(p) в уравнение (1.17) получим следующие операторные сопротивления:

, где , (1.18)

для генератора с автотрансформаторной связью (индуктивной трёхточки);

, где (1.19)

для схемы Колпитца (емкостной трёхточки).

Рис. 11. Общая структура генератора. Рис. 12. Трёхточечная схема.

Подставляя (1.18) и (1.19) в уравнение (1.16), получим ДУ, описывающие колебательные процессы в индуктивной трёхточке:

, (1.20)

и в емкостной трёхточке:

. (1.21)

Также рассмотрим мост Вина (рис. 15), который используется для генерации в области звуковых частот.

Рис. 13. Индуктивная трёхточка. Рис. 14. Емкостная трёхточка.

Операторное сопротивление такого генератора равно

. (1.22) Рис. 15. Мост Вина.
Опять подставляя уравнение для операторного сопротивления в (1.16), получим ДУ этого контура:
. (1.23)
Все рассмотренные генераторы являются активными, нелинейными, автономными системами.
       

Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал