Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Темпоральные логики. Нечеткая и модальные логики. Темпоральная логика (англ






Темпоральная логика (англ. temporal logic) в логике — это логика, учитывающая причинно-следственные связи в условиях времени. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале. Она была разработана в 1960-х Артуром Приором на основе модальной логики и получила дальнейшее развитие в информатике благодаря трудам лауреата Тьюринговской премии Амира Пнуэли.Есть два подхода темпоральной логики, основанные на принципах здравого смысла и диалектики: «после этого» означает «по причине этого», либо «после этого» означает «позже» в хронологическом смысле.

Нечёткая логика и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В этой работе понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0..1] а не только 0 или 1. такие множества были названы нечеткими. Также автором были предложены различные логические операции над нечеткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечеткие множества.Символическая нечёткая логика

Символическая нечёткая логика основывается на понятии t-нормы. После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.

Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя.

Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).

Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).

Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (Product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.

Модальная логика — логика в которой кроме стандартных логических связок, переменных и/или предикатов есть модальности (модальные операторы). Модальности бывают разные; наиболее распространены временны́ е («когда-то в будущем», «всегда в прошлом», «всегда» и т. д.) и пространственные («здесь», «где-то», «близко» и т. д.). Например, модальная логика способна оперировать утверждениями типа «Москва всегда была столицей России» или «Санкт-Петербург, когда-то в прошлом, был столицей России», которые невозможно или крайне сложно выразить в немодальном языке. Кроме временных и пространственных модальностей есть и другие, например «известно, что» (логика знания) или «можно доказать, что» (логика доказуемости).Обычно для обозначения модального оператора используется и двойственный к нему :


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал