Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






БИЛЕТ 13Е Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.






 

Общее решение на интервале X линейного неоднородного дифференциального уравнения с непрерывными на интервале интегрирования X коэффициентами и непрерывной функцией f(x) равно сумме общего решения соответствующего ЛОДУ и какого-нибудь частного решения исходного неоднородного уравнения, то есть, .

 

Существует несколько методов нахождения частного решения ЛНДУ второго порядка с постоянными коэффициентами. Методы выбираются в зависимости от вида функции f(x), стоящей в правой части уравнения.

1.Если f(x) является многочленом n-ой степени f(x) = Pn(x), то частное решение ЛНДУ ищется в виде , где Qn(x) – многочлен степени n, а r – количество корней характеристического уравнения, равных нулю. Так как - частное решение уравнения , то коэффициенты, определяющие многочлен Qn(x), находятся методом неопределенных коэффициентов из равенства .

2.Если функция f(x) представлена произведением многочлена степени n и экспоненты , то частное решение ЛНДУ второго порядка ищется в виде , где Qn(x) – многочлен n-ой степени, r – число корней характеристического уравнения, равных . Коэффициенты многочлена Qn(x) определяются из равенства .

3.Если функция f(x) имеет вид , где А1 и В1 – числа, то частное решение ЛНДУ представляется как , гдеА и В – неопределенные коэффициенты, r – число комплексно сопряженных пар корней характеристического уравнения равных . Коэффициенты многочлена А и В находятся из равенства .

4.Если , то , где r – число комплексно сопряженных пар корней характеристического уравнения, равных , Pn(x), Qk(x), Lm(x) и Nm(x) - многочлены степени n, k, m и m соответственно, m = max(n, k). Коэффициенты многочленов Lm(x) и Nm(x) находятся из равенства .

5.Для любого другого вида функции f(x) применяется следующий алгоритм действий:

находится общее решение соответствующего линейного однородного уравнения как y0 = C1 ⋅ y1 + C2 ⋅ y2, где y1 и y2 - линейно независимые частные решения ЛОДУ, а С1 и С2 – произвольные постоянные;

варьируются произвольные постоянные, то есть, в качестве общего решения исходного ЛНДУ принимается y = C1(x) ⋅ y1 + C2(x) ⋅ y2;

производные функций C1(x) и С2(x) определяются из системы уравнений , а сами функции C1(x) и C2(x)находятся при последующем интегрировании.

 

БИЛЕТ №14
Система «хищник — жертва» — сложная экосистема, для которой реализованы долговременные отношения между видами хищника и жертвы, типичный пример коэволюции.
Отношения между хищниками и их жертвами развиваются циклически, являясь иллюстрацией нейтрального равновесия.
Биологическая система:
приспособления одних преодолеваются приспособлениями других. Длительное сосуществование формир. систему взаимодействий. Интродукция видов приводит к нарушениям в системе.
Математическая система:
x - кол-во жертв; y – кол-во хищников; t - время; α, β, γ, δ - коэффициенты, отражающие взаимосвязь видов:

1.) - Рассматр. сист. с достатком еды и отсутствием миграций видов:
α = коэффициент прироста

- Пока хищники не охотятся, они вымирают:
γ = коэффициент убыли хищников

- При их встречах (частота которых прямо пропорциональна величине ):
β = коэффициент убийств жертв, δ = коэффициент рождаемости хищников

РЕШЕНИЕ:
Нахождение стационарной позиции системы. Изменение численности популяции = 0.


ЗАДАНИЕ ОТКЛОНЕНИЯ В СИСТ:
При внесении колебаний в систему , , из-за их малой величины их 2 3 n можно пренебречь:
Популяции x и y с малыми отклонениями:


Применяя их к уравнениям модели, следует:

При смещении данной системы из положения гармонического равновесия она испытывает действие возвращающей силы.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал