Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Односторонние пределы функции. Классификация точек разрыва. Пример.
Определение: Если f(x) ®A1при х ® а только при x< a, то - называется пределом функции f(x) в точке х = а слева, а еслиf(x) ®A2при х ® а только при x> a, то называется пределом функции f(x) в точке х = а справа.
у f(x)
А2
А1
Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.
Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x). Точки разрыва и их классификация. Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва. Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной. Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке. Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.
Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее. Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже. Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен. Пример. Функция Дирихле (Дирихле Петер Густав(1805-1859) – немецкий математик, член- корреспондент Петербургской АН 1837г) не является непрерывной в любой точке х0. Пример. Функция f(x) = имеет в точке х0 = 0 точку разрыва 2 – го рода, т.к. .
Пример. f(x) = Функция не определена в точке х = 0, но имеет в ней конечный предел , т.е. в точке х = 0 функция имеет точку разрыва 1 – го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию:
График этой функции:
17. Функции, непрерывные на отрезке. Их свойства: ограниченность, достижение наибольшего и наименьшего значений. Пример, показывающий существенность условия «на отрезке». Функция f(х) называется непрерывной на интервале (отрезке), если она непрерывна в любой точке этого интервала (отрезка). При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала. Свойства функций, непрерывных на отрезке: Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M ≤ f(x) ≤ M. Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения (рис. 7.4). Т.е. существуют такие значения х1 и х2, что f(x1) = m, f(x2) = M, причемm ≤ f(x) ≤ M. Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке. Свойство 3: (Вторая теорема Больцано – Коши). Функция, непрерывная на отрезке [a, b] и принимает на его концах неравные значения f(a) = A, f(b) = B, то на этом отрезке она принимает и все промежуточные значения между А и В. Геометрически свойство очевидно (см. рис.8.4) Для любого числа С, заключенного между А и В, найдется точка свнутри этого отрезка такая, что f(с)=C. Прямая у=С пересечет график функции по крайней мере в одной точке. Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак. Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x) – непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0 (см. рис. 9.4). Т.е. если sign(f(a)) ≠ sign(f(b)), тох0: f(x0) = 0.
|