Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства
[править]Геометрические свойства векторного произведения Рисунок 1: Площадь параллелограмма равна векторному произведению. Рисунок 2: Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на a × b и вектора a на b × c, первым шагом является нахождение скалярных произведений. § Необходимым и достаточным условием коллинеарности двух векторов является равенство нулю их векторного произведения. § Модуль векторного произведения равняется площади S параллелограмма, построенного на приведённых к общему началу векторах и (см. Рисунок 1) § Если — единичный вектор, ортогональный векторам и и выбранный так, что тройка — правая, а S — площадь параллелограмма, построенного на них (приведённых к общему началу), то для векторного произведения справедлива формула: § Если — какой-нибудь вектор, π — любая плоскость, содержащая этот вектор, — единичный вектор, лежащий в плоскости π и ортогональный к , — единичный вектор, ортогональный к плоскости π и направленный так, что тройка векторов является правой, то для любого лежащего в плоскости π вектора справедлива формула § При использовании векторного и скалярного произведений можно высчитать объём параллелепипеда, построенного на приведённых к общему началу векторах a, b и c (см. Рисунок 2). Такое произведение трех векторов называется смешанным. На рисунке показано, что этот объём может быть найден двумя способами: геометрический результат сохраняется даже при замене «скалярного» и «векторного» произведений местами: Величина векторного произведения зависит от синуса угла между изначальными векторами, поэтому векторное произведение может восприниматься как степень «перпендикулярности» векторов также, как и скалярное произведение может рассматриваться как степень «параллельности». Векторное произведение двух единичных векторов равно 1 (единичному вектору), если изначальные векторы перпендикулярны, и равно 0, если векторы параллельны. [править]Алгебраические свойства векторного произведения
Условия параллельности и перпендикулярности векторов 3) 1.16. Смешанное произведение векторов и его свойства
Смешанным произведением векторов называется число , равное скалярному произведению вектора на векторное произведение векторов и . Смешанное произведение обозначается .
Геометрические свойства смешанного произведения
1. Модуль смешанного произведения некомпланарных векторов равен объему параллелепипеда, построенного на этих векторах. Произведение положительно, если тройка векторов — правая, и отрицательно, если тройка — левая, и наоборот.
2. Смешанное произведение равно нулю тогда и только тогда, когда векторы компланарны:
векторы компланарны. Докажем первое свойство. Найдем по определению смешанное произведение:, где — угол между векторами и . Модуль векторного произведения (по геометрическому свойству 1) равен площади параллелограмма, построенного на векторах и :. Поэтому . Алгебраическое значение длины проекции вектора на ось, задаваемую вектором , равно по модулю высоте параллелепипеда, построенного на векторах (рис. 1.47). Поэтому модуль смешанного произведения равен объему этого параллелепипеда:
Знак смешанного произведения определяется знаком косинуса угла . Если тройка правая, то и смешанное произведение положительно. Если же тройка левая, то и смешанное произведение отрицательно. Докажем второе свойство. Равенство возможно в трех случаях: или (т.е. ), или (т.е. вектор принадлежит плоскости векторов и ). В каждом случае векторы компланарны (см. разд. 1.1).
Алгебраические свойства смешанного произведения 1. При перестановке двух множителей смешанное произведение изменяет знак на противоположный:
При циклической (круговой) перестановке множителей смешанное произведение не изменяется:
2. Смешанное произведение линейно по любому множителю.
Первое свойство следует из геометрического свойства 1 и свойств ориентации троек векторов (см. разд. 1.9), поскольку от перестановки двух множителей модуль смешанного произведения не изменяется, а меняется только ориентация тройки. При циклической перестановке векторов ориентация тройки не изменяется.
Второе свойство следует из линейности скалярного произведения и свойства 1. Пример 1.21. Объем параллелепипеда, построенного на векторах , равен . Найти объем параллелепипеда, построенного на векторах.
Решение. Используя алгебраические и геометрические свойства, найдем смешанное произведение а затем его модуль . По первому геометрическому свойству смешанного произведения искомый объем равен . Теорема 1.9 (формула вычисления смешанного произведения). Если векторы в правом ортонормированном базисе имеют координаты ; ; соответственно, то смешанное произведение этих векторов находится по формуле
В самом деле, учитывая (1.10) и (1.15), по определению находим:
что и требовалось доказать. 4)
|