Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Корреляционный анализ






Методика

 

Метод корреляционного анализа применяется для установления связи между случайными величинами. Установление связи между двумя случайными величинами называется парной корреляцией, а между тремя или большим числом случайных величин – множественной. Примеры парных корреляций показаны на рис (4.3 методика).

Парная корреляция может быть линейной и нелинейной, положительной и отрицательной. Линейная связь является прямолинейной, а нелинейная – криволинейной. При положительной корреляции увеличение значений одной случайной величины ведет к увеличению значений другой (например, с увеличением диаметра ствола деревьев увеличивается их высота). Отрицательная связь предполагает уменьшение одной случайной величины при увеличении другой. Примером нелинейной корреляции является связь высоты ствола с его диаметром, когда с увеличением диаметра увеличивается и высота, но связь между ними является криволинейной, затухающей. Примером обратной связи является связь числа стволов на гектаре с их размерами.


 

y y

 

 

x x

Рис.9. Положительная линейная связь Рис.10. Положительная нелинейная связь

y y

 

 

x x

Рис.11. Отрицательная линейная связь Рис.12. Отрицательная

нелинейная связь

Для оценки тесноты связи двух случайных величин при линейной их связи служит коэффициент корреляции, а криволинейной – корреляционное отношение. Коэффициент корреляции является частым случаем корреляционного отношения. В корреляционной связи одному значению аргумента соответствует приближенное значение функции или некоторое множество значений функции, в той или иной степени близких друг к другу. Чем теснее связь признаков, тем больше корреляционная связь приближается к функциональной.

На лесные и ботанические объекты воздействуют факторы в их широком разнообразии, поэтому между признаками этих объектов встречаются исключительно корреляционные связи. В одной и той же парной связи может существовать как прямая, так и обратная связь, например, при увеличении размеров деревьев хвойной породы с возрастом до определенного уровня число шишек на дереве увеличивается, после достижения этого уровня число шишек на дереве снижается. В задачу лесобиолога входит объяснить причины этого явления, а в задачу лесовода – использовать с максимальной лесоводственной эффективностью динамику возобновительной способности лесов.

При изучении корреляционных связей у древесных растений методом парной корреляции можно считать доказанной лишь ту связь, механизм которой понятен исследователю; в некоторых случаях при механическом подходе можно установить связь, которой на самом деле нет. Это происходит в случае, когда два изучаемых признака в сильной степени зависят от какого-либо третьего признака или совокупности признаков. Поэтому более правильным будет одновременное изучение связей всего комплекса признаков с использованием метода множественной корреляции и корреляционных плеяд.

При изучении связи двух взвешенных рядов распределения составляются корреляционная решетка с построением в последующем эмпирической линии регрессии, позволяющей определить характер зависимости одной величины от другой. При прямолинейной связи вычисляют коэффициент корреляции и коэффициент ранговой корреляции Спирмена, а при криволинейной – корреляционное отношение независимо от объема выборки. Чем ближе эмпирическое распределение признака к симметричному и, более того, к нормальному, тем больше вероятность существования корреляционных связей данного признака с другими признаками. Для выявления этих связей иногда требуется большое число измерений (наблюдений).


 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал