Главная страница
Случайная страница
КАТЕГОРИИ:
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Дискретные случайные величины.
Пример 2. Пусть случайная величина - число наступления события A при одном испытании, причем P(A)=p. Множество возможных значений состоит из 2-х чисел 0 и 1: =0, если событие A не произошло, и =1, если событие A произошло. Таким образом,

Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить событие A. Пусть вероятность наступления события A при каждом испытании равна p. Рассмотрим случайную величину — число наступлений события A при n независимых испытаниях. Область изменения состоит из всех целых чисел от 0 до n включительно. Закон распределения вероятностей р(m) определяется формулой Бернулли (13'):

Закон распределения вероятностей по формуле Бернулли часто называют биномиальным, так как Pn(m) представляет собой m -й член разложения бинома . Пусть случайная величина может принимать любое целое неотрицательное значение, причем
| (17)
| где — некоторая положительная постоянная. В этом случае говорят, что случайная величина распределена по закону Пуассона, Заметим, что при k=0 следует положить 0! =1. Как мы знаем, при больших значениях числа n независимых испытаний вероятность Pn(m) наступления m раз события A удобнее находить не по формуле Бернулли, а по формуле Лапласа [см. формулу (15)]. Однако последняя дает большие погрешности при малой вероятности р появления события А в одном испытании. В этом случае для подсчета вероятности Pn(m) удобно пользоваться формулой Пуассона, в которой следует положить . Формулу Пуассона можно получить как предельный случай формулы Бернулли при неограниченном увеличении числа испытаний n и при стремлении к нулю вероятности .
Пример 3. На завод прибыла партия деталей в количестве 1000 шт. Вероятность того, что деталь окажется бракованной, равна 0, 001. Какова вероятность того, что среди прибывших деталей будет 5 бракованных?
Решение:
Здесь .
По формуле (17) находим

Распределение Пуассона часто встречается и в других задачах. Так, например, если телефонистка в среднем за один час получает N вызовов, то, как можно показать, вероятность Р(k) того, что в течение одной минуты она получит k вызовов, выражается формулой Пуассона, если положить .

Если возможные значения случайной величины образуют конечную последовательность x1, x2,..., xn, то закон распределения вероятностей случайной величины задают в виде следующей таблицы, в которой

и

Значения
| x1
| x2
| ...
| xn
| Вероятности p(xi)
| p1
| p2
| ...
| pn
|
Эту таблицу называют рядом распределения случайной величины . Наглядно функцию р(х) можно изобразить в виде графика. Для этого возьмем прямоугольную систему координат на плоскости.
По горизонтальной оси будем откладывать возможные значения случайной величины , а по вертикальной оси - значения функции . График функции р(х) изображен на рис. 2. Если соединить точки этого графика прямолинейными отрезками, то получится фигура, которая называется многоугольником распределения.

Пример 4. Пусть событие А — появление одного очка при бросании игральной кости; Р(A)=1/6. Рассмотрим случайную величину — число наступлений события А при десяти бросаниях игральной кости. Значения функции р(х) (закона распределения) приведены в следующей таблице:
Значения
|
|
|
|
|
|
|
|
|
|
|
| Вероятности p(xi)
| 0, 162
| 0, 323
| 0, 291
| 0, 155
| 0, 054
| 0, 013
| 0, 002
|
|
|
|
|
Вероятности p(xi) вычислены по формуле Бернулли при n=10. Для x> 6 они практически равны нулю. График функции p(x) изображен на рис. 3.

|