Нормальное распределение.
Говорят, что случайная величина нормально распределена или подчиняется закону распределения Гаусса, если ее плотность распределения имеет вид
| (28)
| где a - любое действительное число, а > 0. Смысл параметров a и будет установлен в дальнейшем (см. §4, п. 2). Исходя из связи между плотностью распределения и функцией распределения F(x) [см. формулу (22)], имеем
График функции симметричен относительно прямой x=a. Несложные исследования показывают, что функция достигает максимума при x=a, а ее график имеет точки перегиба при и . При график функции асимптотически приближается к оси Ox. Можно показать, что при увеличении кривая плотности распределения становится более пологой. Наоборот, при уменьшении график плотности распределения сжимается к оси симметрии. При a=0 осью симметрии является ось Oy. На рис. 11 изображены два графика функции y= . График I соответствует значениям a=0, =1, а график II - значениям a=0, =1/2.
Покажем, что функция удовлетворяе условию (24), т.е. при любых a и выполняется соотношение
В самом деле, сделаем в этом интеграле замену переменной, полагая . Тогда
В силу четности подинтегральной функции имеем
Следовательно,
Но,
В результате получим
| (29)
| Найдем вероятность . По формуле (23) имеем
Сделаем в этом интеграле замену переменной, снова полагая . Тогда , и
| (30)
| Как мы знаем, интеграл не берется в элементарных функциях. Поэтому для вычисления определенного интеграла (30) вводится функция
| (31)
| называемая интегралом вероятностей. Для этой функции составлены таблицы ее значений для различных значений аргумента (см. табл. II Приложения). Используя формулу (31) получим
Итак,
| (32)
| Легко показать, что функция Ф(х) (интеграл вероятностей) обладает следующими свойствами. 1°. Ф(0)=0 2°. ; при величина практически равна 1/2 (см. табл. II). 3°. Ф(-x)=-Ф(х), т.е. интеграл вероятностей является нечетной функцией.
График функции Ф(х) изображен на рис. 12.
Таким образом, если случайная величина нормально распределена с параметрами a и , то вероятность того, что случайная величина удовлетворяет неравенствам , определяется соотношением (32). Пусть > 0. Найдем вероятность того, что нормально распределенная случайная величина отклонится от параметра a по абсолютной величине не более, чем на , т.е. . Так как неравенство равносильно неравенствам , то полагая в соотношении (32) , получим
Вследствие того, что интеграл вероятностей - нечетная функция, имеем
|