Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Плотность вероятности и распределение вероятности.
В общем случае распределение вероятностей для дискретной случайной переменной задается в следующем виде:
Непрерывная случайная переменная имеет более сложное вероятностное описание. Опр: Функция плотности вероятности f(x) есть функция, которая для любого интервала В общем случае f(x) некоторая кривая:
Зная функцию плотности f(x) можно определить другую функцию для случайной переменной. Для этого необходимо определить чему равна вероятность того, что случайная переменная Х примет значение не больше чем
Такую вероятность можно определить для любой точки оси Х, используя интегральную функцию распределения F(x), называемую еще просто функцией распределения вероятностей: Отсюда следует, что вероятность попадания случайной величины Х в интервал (a; b) равна разности между значениями интегральной функции распределения в правом и левом концах интервала (a; b):
Случайные переменные, имеющие различную физическую природу, могут иметь одну и ту же вероятностную структуру, что зачастую и случается. В конечном итоге видов распределения вероятностей или, по-другому, законов распределения вероятностей не очень много. Рассмотрим некоторые из них. Примеры законов распределения: Первый из этих законов установил Карл Гаусс — немецкий математик 18-19 вв. Он имел дело с измерениями различных явлений и установил, что каждое такое явление несет в себе случайную ошибку измерений. Частота появления таких ошибок, если их брать в большом подчиняется определенному нормальному закону, и если отразить это на графике образуя характерную фигуру. Таким образом был сформулирован нормальный закон распределения вероятностей, согласно которому: малые отклонения от истинного результата в сторону плюса или минуса встречаются в малом числе, а истинные результаты — в большом числе (при этом, предполагается, что исключены систематические ошибки наблюдения). Бельгийский математик А. Кетле (18-19 вв.) распространил нормальное распределение на реальные явления, а именно на измерение окружности груди шотландских солдат. Построив распределение 5738 солдат по охвату груди, он увидел, что оно сходно с распределением ошибок измерений. Плотность вероятности нормального закона определяется по формуле: Если случайная величина Х распределена по нормальному закону распределения, то вероятность того, что Х примет значение, принадлежащее интервалу (α, β) определяется по формуле:
где Распределение Стъюдента (t -распределение с n степенями свободы). Пусть х и Распределение Фишера (распределение F Фишера-Снедекора). Пусть Равномерное распределение. Распределение В учебниках и другой литературе по теории вероятностей имеются таблицы распределения вероятностей для различных законов. Зная плотность распределения вероятностей можно решать и обратную задачу: по заданной вероятности определить интервал попадания случайной переменной. Для симметричного распределения это означает определить интервал
Законы распределения вероятностей позволяют определить две других важнейших характеристики случайной величины Х: математического ожидания и дисперсии случайной переменной.
|