Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства плотности распределения
. (Данное свойство называется условием нормировки плотности распределения.)
Доказательство. Предположим противное: пусть найдется такой отрезок , что плотность распределения отрицательна на этом отрезке. Тогда (см. свойства определенного интеграла) имеем
Но, по определению плотности распределения, интеграл, стоящий в левой части последнего неравенства равен . Так как вероятность события не может быть отрицательной, приходим к противоречию, что доказывает справедливость свойства 1. По определению плотности распределения, Но событие является достоверным, поэтому его вероятность равна 1. Тем самым доказано свойство 2.
|