Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства функции распределения
.
Доказательство. Значение функции распределения равна вероятности соответствующего события, но область значений вероятности есть отрезок – тем самым доказано свойство 2. Используя определение функции распределения, получаем . Но произвольное значение случайной величины принадлежит числовой прямой, поэтому событие является невозможным. Вероятность невозможного события равна нулю (см. § 1.3), поэтому Аналогично, учитывая, что событие является достоверным, а вероятность такого события равна 1, получаем Нетрудно видеть, что причем события правой части этого равенства несовместны. Принимая во внимание определение функции распределения и теорему сложении вероятностей для несовместных событий, получаем что равносильно свойству 4. Доказательство свойства 1 мы оставляем читателю в качестве упражнения (указание: используйте рассуждении от противного и свойство 4).
|