Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Арифметические операции над случайными величинами
Определение. Случайные величины Х и Y называются равными, если их законы распределения точно совпадают, и для произвольного числа справедливо равенство: Пример. Пусть законы распределения случайных величин Х и Y имеют вид:
Эти случайные величины равны, если дополнительно справедливы равенства и , т.е. случайная величина Х принимает значение 0 тогда и только тогда, когда случайная величина Y принимает значение 0, и аналогично со значением 1.
Произвольная случайная величина допускает умножение на число. Действительно, пусть закон распределения случайной величины Х имеет вид:
и – некоторое число. Определение. Случайной величиной называется такая случайная величина, закон распределения которой имеет вид:
Пример. Пусть закон распределения случайной величины Х имеет вид:
и , . Тогда закон распределения :
Можно придумать, например, следующую интерпретацию данному примеру. Заметим, что Х – биномиально распределена с параметрами . Пусть Х – число попаданий в мишень при 2-х выстрелах, при каждом из которых попадание случается с вероятностью 0, 6, и дополнительно известно, что за каждое попадание стрелку выплачивается вознаграждение в размере 5 ден. ед. Тогда Y – заработок стрелка. Определение. Случайные величины Х и Y называются независимыми, если для любых i и j события и – независимы. Пример. Пусть из коробки, в которой – 6 белых и 8 красных шаров, извлекается 1 шар. Рассмотрим случайные величины Х – число белых шаров, Y – число красных шаров из извлеченных. События, например, и – несовместны, а поэтому – зависимы (см. § 1.6). Следовательно, и случайные величины Х и Y зависимы.
Определение. Суммой (разностью, произведением) случайных величин Х и Y называется такая случайная величина (, ), которая принимает значение в некотором испытании, если значения и случайных величин Х и в этом испытании таковы, что (). Пример. Пусть заданы законы распределения независимых случайных величин Х и Y:
Составить закон распределения случайной величины . Решение. Удобно использовать вспомогательную таблицу вида:
в каждой из центральных клеток которой записаны соответствующие произведения случайных величин X и Y. Такая таблица показывает, какие значения принимает случайная величина U и когда она принимает эти значения. Так тогда и только тогда, когда и или и . Поэтому . Применяя теорему сложения вероятностей для несовместных событий, теорему умножения вероятностей – для независимых событий (по условию, случайные величины и – независимы), получаем Для наступления каждого из двух оставшихся значений случайной величины U (-1 и 1) имеется по одной возможности. Например, тогда и только тогда, когда и . Тогда получаем: Аналогично, Окончательно, закон распределения случайной величины U имеет вид:
Упражнение. Составить законы распределения случайных величин Ответ.
Заметим, что закон распределения случайной величины Z фактически найден в примере § 3.1 о двух стрелках. Действительно, исходные независимые случайные величины X и Y данной задачи могут быть интерпретированы как числа попаданий в мишень первого и второго стрелка из § 3.1. Тогда – общее число попаданий, и закон распределения этой случайной величины и найден в упомянутом примере.
|