Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства математического ожидания. (Постоянной случайной величиной С называется такая случайная величина, которая принимает единственное значение равное С с вероятностью 1.) Постоянный
М(С)=С, где С – некоторое число. (Постоянной случайной величиной С называется такая случайная величина, которая принимает единственное значение равное С с вероятностью 1.)
где – произвольное число.
4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий, т.е.
5. Пусть – такие случайные величины, математические ожидания которых равны между собой, т.е. где и а – некоторое число. Тогда среднее арифметическое этих случайных величин равно их общему математическому ожиданию, т.е.
Заметим, что свойства 2 – 5 математического ожидания остаются справедливыми также для непрерывных случайных величин.
Пусть закон распределения случайной величины Х тот же, что и выше (см. начало параграфа). Определение. Дисперсией дискретной случайной величины Х называется число определяемое равенством
Число является мерой разброса значений случайной величины Х около ее математического ожидания. Пример. Пусть случайная величина Х биномиально распределена с параметрами и . Найдем дисперсию этой случайной величины. В предыдущем примере найдено, что М(Х) = 2, 4. Тогда
|