![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Оценка неизвестного параметра. Свойства оценок
Определение. Случайная величина Пример. Если в качестве неизвестного параметра рассматривается вероятность Пример. Пусть случайные величины Пример. Оценкой некоторого параметра
При непосредственном использовании приближенного равенства Возможно также интервальное оценивание неизвестного параметра. Для того, чтобы объяснить, в чем оно состоит, введем в рассмотрение следующие понятия. Определение. Для произвольного Определение. Вероятность того, что неизвестное значение оцениваемого параметра накрывается доверительным интервалом, называется доверительной вероятностью. Таким образом, если – доверительная вероятность (мы предполагаем, что оценка Интервальное оценивание состоит, например, в вычислении доверительной вероятности для заданной предельной ошибки выборки. Решение задачи интервального оценивания связано с определением характера закона распределения используемой оценки Рассмотрим теперь некоторые свойства оценок. Определение. Оценка Определение. Оценка Другими словами, оценка Определение. Несмещенная оценка некоторого параметра называется эффективной, если она обладает наименьшей дисперсией среди всех несмещенных оценок, найденных по выборке заданного объема. Пример. Частость Пример. Среднее арифметическое некоторого числа независимых и одинаково распределенных случайных величин является несмещенной и состоятельной оценкой общего математического ожидания этих случайных величин. Действительно, несмещенность – есть свойство 5 математического ожидания (см. § 3.3). Состоятельность утверждается теоремой Чебышёва (см. § 6.2).
|