![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
И теоремы Муавра-Лапласа как следствия из нее
Центральная предельная теорема. Пусть случайные величины Отметим, что центральная предельная теорема является частным случаем более общего утверждения – теоремы Ляпунова (подробнее см. учебник Н.Ш. Кремера).
Следствие. Биномиальный закон распределения неограниченно приближается к нормальному при неограниченном увеличении параметра n этого закона. Доказательство. Пусть случайная величина Х – биномиально распределена с параметрами n и p. Рассмотрим сначала тот конкретный пример, когда Х – число наступлений некоторого события А в n повторных независимых испытаниях, в каждом из которых это событие наступает с вероятностью p. Введем в рассмотрение случайные величины
Тогда по центральной предельной теореме для случайной величины Х получаем требуемое утверждение. Аналогично данное Следствие доказывается и в общем случае. Данное Следствие при работе с биномиально распределенными случайными величинами (при достаточно больших n) позволяет использовать формулы, известные для нормально распределенных случайных величин. Именно это и происходит при применении теорем Муавра-Лапласа. Так, заменяя в формуле (1) из § 4.2 а и Геометрически приближение биномиального распределения к нормальному означает, что с ростом n точки плоскости с координатами
где
|