Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Расчет средне квадратич отклонения по способу моментов
1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней . 2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины . 3. Коэффициент вариации позволяет судить об однородности совокупности:
– < 17% – абсолютно однородная; – 17–33%% – достаточно однородная; – 35–40%% – недостаточно однородная; – 40–60%% – это говорит о большой колеблемости совокупности.
Выборочное наблюдение применяется, когда применение сплошного наблюдения физически невозможно из-за большого массива данных или экономически нецелесообразно. Выборочное наблюдение есть такое несплошное наблюдение, при котором отбор подлежащих обследованию единиц осуществляется в случайном порядке, затем отобранная часть изучается, а далее результаты распространяются на всю исходную совокупность. В задачах по статистике наблюдение происходит таким образом, что эта часть отобранных единиц в уменьшенном масштабе представляет всю совокупность. Генеральная совокупность — это совокупность, из которой производится отбор. Все обобщающие показатели данной совокупности называются генеральными. Выборочная совокупность — это совокупность отобранных единиц. Все ее обобщающие показатели получили название выборочных. Виды выборки по методу Повторная выборка характеризуется тем, что численность единиц генеральной совокупности в процессе выборки остается постоянной. Бесповторная выборка При такой выборке единица совокупности, попавшая в выборку, в генеральную совокупность не возвращают и в дальнейшем в выборке уже не участвует Доля выборки рассчитывается как отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности и определяется по формуле: где N — объем генеральной совокупности (число входящих в нее единиц);
В статистике приняты следующие условные обозначения: N - объем генеральной совокупности; п - объем выборочной совокупности; - средняя в генеральной совокупности; - средняя в выборочной совокупности; р - доля единиц в генеральной совокупности; w - доля единиц в выборочной совокупности; - генеральная дисперсия; S2 - выборочная дисперсия; - среднее квадратическое отклонение признака в генеральной совокупности; S - среднее квадратическое отклонение признака в выборочной совокупности.
Для типической выборки величина стандартной ошибки зависит от точности определения групповых средних. При серийной выборке величина ошибки выборки зависит не от числа исследуемых единиц, а от числа обследованных серий (s) и от величины межгрупповой дисперсии:
|