![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Лекция 10
Тема: Силовой расчёт. Силы инерции звеньев. Статическая определимость кинематических цепей. План лекции.
Задачи и методы Для расчёта элементов кинематических пар и звеньев на прочность и определения их конструктивных размеров предварительно определяют действующие на них при движении механизма силы. Как правило, заданными являются силы полезных сопротивлений, приложенные к ведомому звену. Некоторые звенья механизмов имеют неравномерное движение и испытывают переменные по величине и направлению ускорения. Поэтому реакции (давления) в кинематических парах зависят не только от внешних приложенных к механизму сил, например от сил полезных сопротивлений, но и от дополнительных динамических давлений, возникающих из-за неравномерного движения звеньев. Величина и направление динамических давлений зависят от сил инерции звеньев. Известно, что если силы инерции твёрдых тел (звеньев) условно приложить к последним, то эти силы уравновесятся с внешними, приложенными к звеньям механизма силами. Следовательно, если к механизму, кроме сил внешних, приложить ещё и силы инерции его звеньев, то условно можно считать, что механизм находится в покое (равновесии). В этом случае для определения давлений в кинематических парах можно использовать уравнения статики, если в них включить силы инерции звена. Решая эти уравнения, определим давления в кинематических парах движущегося механизма. Так как в уравнения статики вошли силы инерции звеньев, возникающие при движении механизма, то такой метод расчёта называют кинетостатическим. Для упрощения расчёта трением между элементами кинематических пар пренебрегают. Сначала определяют давления в кинематических парах. Затем, выбрав значения коэффициентов трения, можно подсчитать силы трения, возникающие в кинематических парах механизмов. В результате кинетостатического расчёта можно определить усилие, которое оказывают на ведущее звено силы полезных сопротивлений, приложенные к механизму, и силы инерции его звеньев. Момент, равный моменту этой силы относительно оси вращения кривошипа и направленный в обратную сторону, равен тому движущему моменту МД, который должен быть приложен со стороны двигателя к ведущему звену, чтобы механизм, нагруженный заданными силами полезных сопротивлений, двигался по заданному закону.
Силы инерции звеньев Силы инерции материальных точек звена могут быть приведены к одной точке и, таким образом, представлены их главным вектором и главным моментом. Главный вектор сил инерции, называемый обычно силой инерции звена, равен
где m [кг] – масса звена, Рассмотрим звено, которое совершает плоскопараллельное движение и имеет плоскость материальной симметрии, параллельную плоскости его движения. Точкой приведения сил инерции звена следует брать его центр масс (рис. 1). Тогда упрощается выражение момента инерционной пары сил – главного момента сил инерции, что то же, инерционного момента. Он равен Mu = - IS × e, (2) где IS [кг× м 2] – момент инерции масс звена относительно оси, проходящей через его центр масс перпендикулярно плоскости его материальной симметрии, или, иначе, центральный момент инерции звена, e [c – 2] – угловое ускорение звена. Инерционная нагрузка звена
Рисунок 1 Инерционный момент Mu имеет размерность [кг× м× с – 2] = [Н× м]. Плоскость, в которой он действует, параллельна плоскости движения звена; он направлен в сторону, противоположную направлению углового ускорения звена. Таким образом, в общем случае инерционная нагрузка звена представляется одной инерционной силой Частные случаи (рис. 2). Поступательное движение звена (рис. 2, a). Инерционная нагрузка состоит только из одной инерционной силы Неравномерное вращательное движение звена (рис. 2, b). Инерционная нагрузка состоит из силы инерции
где aSn и aS t – нормальное и тангенциальное ускорения центра масс звена, w и e – угловая скорость и угловое ускорение звена, lAS – расстояние от центра масс S до оси A вращения звена. Силу
IS – центральный момент инерции звена, m – его масса. Равномерное вращательное движение звена (рис. 2, d). Инерционная нагрузка состоит только из силы инерции
Частные случаи инерционной нагрузки звена
a)
b)
c) d)
e) f) Рисунок 2 противоположно направлению вектора нормального ускорения центра масс звена. Это ускорение равно aSn = w2× lAS, (5) и, следовательно, центробежная сила инерции будет равна
Произведение m× lAS называется неуравновешенностью или дисбалансом и имеет размерность [кг× м]. Неравномерное вращательное движение звена при совпадении центра масс S звена с его осью вращения A (рис. 2, e). Инерционная нагрузка звена состоит только из инерционного момента Mu, который находится по формуле (2). Равномерное вращательное движение звена при совпадении центра масс S звена с его осью вращения A (рис. 2, f). В этом случае lAS = 0 и в соответствии с формулой (3) aS = 0, следовательно, Чтобы найти инерционную нагрузку всех звеньев какого-нибудь механизма для заданного положения, необходимо построить планы скоростей и ускорений. Подсчитывается инерционная нагрузка для каждого звена механизма: инерционная сила и инерционный момент. Статическая определимость структурных групп Равнодействующая F давлений между элементами низшей кинематической пары определяется величиной, направлением и точкой приложения. Если не учитывать трение, то во вращательной паре всегда известна точка приложения силы F (центр шипа), а в поступательной – её направление (перпендикуляр к направляющей) (рис. 3).
Давления в кинематических парах
a b a) вращательная пара, b) поступательная пара Рисунок 3 Следовательно, в каждой низшей паре неизвестны два параметра силы F. Для каждого из подвижных звеньев плоского механизма можно написать три уравнения равновесия, а для всех подвижных звеньев – 3 n уравнений. Для определения давления в каждой из низших пар, как было указано, достаточно определить два неизвестных. Кинематическая цепь является статически определимой, если она удовлетворяет условию 3 n = 2 p 5 (число уравнений статики равно числу неизвестных параметров приложенных к ней сил). Ранее было показано, что условию 3 n = 2 p 5 удовлетворяют структурные группы. Следовательно, структурная группа звеньев статически определима. Поэтому методы кинетостатического расчёта разработаны применительно к различным типам структурных групп. Как было показано в лекции 7, при кинематическом исследовании механизма порядок исследования совпадает с порядком присоединения групп, т.е. вначале рассматривается группа, присоединяемая к начальному или начальным звеньям и стойке. Потом рассматривается следующая группа и т.д. Порядок силового расчёта является обратным порядку кинематического исследования, т.е. силовой расчёт начинается с последней (считая от начального звена) присоединённой группы и кончается силовым расчётом начального звена. Пусть, например, подлежит силовому расчёту шестизвенный механизм, показанный на рис. 4. К начальному звену 1 и стойке 6 присоединена первая группа II класса, состоящая из звеньев 2 и 3. Далее к звену 2 и стойке 6 присоединена вторая группа II класса, состоящая из звеньев 4 и 5. Силовой расчёт следует начинать с последней по присоединению группы, т.е. с группы, состоящей из звеньев 4 и 5, после этого следует перейти к группе, состоящей из звеньев 2 и 3 и, наконец, к силовому расчёту начального звена 1.
К порядку силового расчёта шестизвенного механизма
Рисунок 4
|