Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Перевод чисел из системы счисления с основанием 2 в систему счисления с основанием 2n и обратно






Перевод целых чисел. Если основание q-ичной системы счисления является степенью числа 2, то перевод чисел из q-ичной системы счисления в 2-ичную и обратно можно проводить по более простым правилам. Для того, чтобы целое двоичное число записать в системе счисления с основанием q=2n, нужно:

1. Двоичное число разбить справа налево на группы по n цифр в каждой.

2. Если в последней левой группе окажется меньше n разрядов, то ее надо дополнить слева нулями до нужного числа разрядов.

3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n.

Пример 2.22. Число 1011000010001100102 переведем в восьмеричную систему счисления.

Разбиваем число справа налево на триады и под каждой из них записываем соответствующую восьмеричную цифру:

           
           

Получаем восьмеричное представление исходного числа: 5410628.

Пример 2.23. Число 10000000001111100001112 переведем в шестнадцатеричную систему счисления.

Разбиваем число справа налево на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

           
      F    

Получаем шестнадцатеричное представление исходного числа: 200F8716.

Перевод дробных чисел. Для того, чтобы дробное двоичное число записать в системе счисления с основанием q=2n, нужно:

1. Двоичное число разбить слева направо на группы по n цифр в каждой.

2. Если в последней правой группе окажется меньше n разрядов, то ее надо дополнить справа нулями до нужного числа разрядов.

3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n.

Пример 2.24. Число 0, 101100012 переведем в восьмеричную систему счисления.

Разбиваем число слева направо на триады и под каждой из них записываем соответствующую восьмеричную цифру:

0,      
0,      

Получаем восьмеричное представление исходного числа: 0, 5428.

Пример 2.25. Число 0, 1000000000112 переведем в шестнадцатеричную систему счисления. Разбиваем число слева направо на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

0,      
0,      

Получаем шестнадцатеричное представление исходного числа: 0, 80316

Перевод произвольных чисел. Для того, чтобы произвольное двоичное число записать в системе счисления с основанием q=2n, нужно:

1. Целую часть данного двоичного числа разбить справа налево, а дробную — слева направо на группы по n цифр в каждой.

2. Если в последних левой и/или правой группах окажется меньше n разрядов, то их надо дополнить слева и/или справа нулями до нужного числа разрядов;

3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n

Пример 2.26. Число 111100101, 01112 переведем в восьмеричную систему счисления.

Разбиваем целую и дробную части числа на триады и под каждой из них записываем соответствующую восьмеричную цифру:

    101,    
    5,    

Получаем восьмеричное представление исходного числа: 745, 348.

Пример 2.27. Число 11101001000, 110100102 переведем в шестнадцатеричную систему счисления.

Разбиваем целую и дробную части числа на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

    1000,    
    8, D  

 

Получаем шестнадцатеричное представление исходного числа: 748, D216.

Перевод чисел из систем счисления с основанием q=2n в двоичную систему. Для того, чтобы произвольное число, записанное в системе счисления с основанием q=2n, перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее n-значным эквивалентом в двоичной системе счисления.

Пример 2.28. Переведем шестнадцатеричное число 4АС3516 в двоичную систему счисления.

В соответствии с алгоритмом:

  А С    
         

Получаем: 10010101100001101012.

Задания для самостоятельного выполнения (Ответы)

2.38. Заполните таблицу, в каждой строке которой одно и то же целое число должно быть записано в различных системах счисления.

Двоичная Восьмеричная Десятичная Шестнадцатеричная
       
       
       
      9B

 

2.39. Заполните таблицу, в каждой строке которой одно и то же дробное число должно быть записано в различных системах счисления.

Двоичная Восьмеричная Десятичная Шестнадцатеричная
0, 101      
  0, 6    
    0, 125  
      0, 4

 

2.40. Заполните таблицу, в каждой строке которой одно и то же произвольное число (число может содержать как целую, так и дробную часть) должно быть записано в различных системах счисления.

Двоичная Восьмеричная Десятичная Шестнадцатеричная
111101, 1      
  233, 5    
    46, 5625  
      59, B

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал