Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Закон равномерной плотности
К наиболее распространенным в природе законам распределения относят следующие: закон равномерной плотности, нормальный закон распределения, закон Пуассона и экспоненциальное распределение. Рассмотрим их более подробно. Случайную непрерывную величину X называют распределенной равномерно на интервале (a, b), если ее плотность распределения на этом интервале постоянна, а вне этого интервала равна нулю. Пусть случайная величина X может принимать частные значения от a до b, причем все частные значения равновероятны (Рис.7). Требуется определить выражение для плотности вероятности f(x).
Рисунок 7 График плотности распределения случайной величины X
Для определения выражение для плотности вероятности f(x) воспользуемся свойством плотности распределения
Поскольку по определению f(x) есть величина постоянная, то ее можно вынести за знак интеграла, т.е.
Зная выражение для плотности вероятности f(x), можно найти функцию распределения как
График функции равномерного распределения в соответствии с этим выражением примет вид, изображенный на рис.8.
Рисунок 8 График функции равномерного распределения
При известном выражении для плотности равномерного распределения нетрудно вывести выражения, позволяющие вычислить математическое ожидание, дисперсию и средне - квадратичное отклонение для этого закона
|