Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Разложение вектора по координатным осям
Пусть имеем вектор . Построим в точке А систему прямоугольных координат Ахуz. Чтобы разложить вектор Р по направлениям осей, нужно построить на этих осях параллелепипед, для которого АВ является диагональю рис2.10. Рис.2.10 Векторы называются составляющими данного вектора Р по координатным осям. Обозначив составляющие через , получим: (2.9) Следует обратить внимание на различие между составляющими данного вектора по координатным осям и проекциями этого вектора на оси: проекция вектора на ось величина скалярная, а составляющая данного вектора есть также вектор. Построим единичные векторы, направленные по координатным осям, направленные в положительную сторону. Эти векторы называются единичными координатными векторами (ортами) и обозначаются буквами i, j, k. Задавая векторы i, j, k, мы определяем направления осей выбранной системы координат. На основании равенства (2.8) можно записать: , и (2.10) Подставляя (2.10) в (2.9) получим: (2.11) (2.11) называется формулой разложения вектора Р по координатным осям. В формуле разложения вектора по координатным осям скалярные коэффициенты при ортах i, j, k представляют собой проекции этого вектора на эти оси.
|