Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Интегралы от степеней тригонометрических функций






Рассмотрим интегралы вида

, где m и n –действительные числа

а) Пусть m и n – действительные числа и по крайней мере одно из них положительное, нечетное, например, n=2p+1. В этом случае интегрирование проводят следующим способом:

Обозначим sin x = t

Таким образом, вычисление интеграла свелось к интегрированию рациональной функции.

Пример 1:

обозначим sin x = t

 

Пример 2:

Обозначим sin x = t

б) Пусть m и n действительные положительные четные числа (m=2p, n=2q). Интегрирование тригонометрических функций в этом случае может быть сведено к интегрированию рациональных функций посредством известных из тригонометрии формул:

Заменим в подынтегральном выражении четные степени синуса и косинуса по указанным формулам.

Далее возведем двучлены в указанные степени, получим вновь четные и нечетные степени синуса и косинуса. Нечетные степени проинтегрируем как указано в пункте а), четные степени снова понизим по формулам понижения четных степеней.

Например:


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.004 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал