Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Умовний екстремум функціонала.






Задачі визначення екстремуму функціоналу, в яких на допустимі криві накладаються додаткові обмеження - умови зв'язку, називаються задачами на умовний екстремум.

Нехай на множині G= {у(х)| у = (у1, y2..., уn), уi (х) С(1)(а, b), і = ,

у(а) = (у1(0),..., уn(0)), у(b) = (у1(1),..., уn(1))}, визначено функціонал.

J[y(x)]= F(х, у1,..., уn, , у'n, , …, у'n,)dx, де функція F диференційовна по

кожній змінній потрібну кількість раз. Екстремум всього функціонала шукається при додаткових рівняннях зв'язку.

m< n.

Якщо у(х) G задовольняє рівняння зв'язку і реалізує екстремум

функціоналу, то існують такі функції (х), j = , такі, що вектор-функція

у(х) є екстремаллю функціонала

J[y(x)]= (F +

Ф(х, y, у') = F(х, у, у') + - функція Лагранжа.

Екстремум функціоналу при рівняннях зв'язку знаходяться з системи

(*) , яка доповнюється рівняннями зв'язку. З

системи знаходяться i

Приклад 1. На множині G = {(у1, у2)| yi С(1) (0, /2), і=1, 2, у(0)=(1, -1),
у(π /2)=(1, 1)} знайти екстремум функціоналу

J[y(x)]= (y 12 + y22 - y '12 - y '22)dx при умові у12 - 2соsх = 0. о

Розв 'язання. Складемо функцію Лагранжа

Ф = y 12 + y22 - y '12 - y '22 +λ (x)(y1 –y2 -2 соs х).

Система (*) має вигляд

Додаємо їх: 2(у1" + у2") + 2(у] + у2) = 0 у1 + у2 = с1 соs х + с2 sin х. З граничних умов маємо c1 = 0, с2 = 2. Значить, у1 + у2 = 2sinх. Крім того, маємо рівняння зв'язку у1 - у2 = 2соsх. Тому у1 = соsх + sinх, у2 = sin х – соs х. Таким чином,

y 12 + y22 - y '12 - y '22 = (соsх + sinх)2 + (sinх-соsх)2 -(-sin х + соsх)2 - (соs х + sinх)2 =

=0

Приклад 2. Знайти екстремалі і екстремум функціоналу

J[y(x)]= ( y 12 +2 y '12 + y '22)dx, y(0)= (1, 0); y (1)= (e + ; )при умові

y'12=0.

Розв'язання.

Складемо функцію Лагранжа

Ф= y 12 +2 y '12 + y '22 + λ ( y'1 - у2). Тому екстремаль у(х) = (у1(х), у2(х)) задовольняє системі рівнянь

Виключаючи λ (х), маємо у1 - 2у1" + у2" ' = 0, що з врахуванням рівняння

зв'язку має вигляд у1 IV - 2у1 " + у1 = 0. Значить, у1 = (c1 x + с2х + (с3х + с4-х,

у2 = (c1 x + c1 + с2х - (с3х + с4 - с3)e -х. Використовуючи граничні умови,

одержуємо у1 = хех + е -х, у2 = (х + 1)ех – е -х, J ехstr =

Задачі. Знайти екстремалі функціоналу:

1. J[y(x)]= , у(0) = (1, 2); у(1) = (2, 1) при умові

1 - у2 - 3х = 0.

В. у1 = х + 16 у2 = -х +2; 1ехtr = .

2. J[y(x)]= (y' 21+ y'22)dх, у(0) = (-1, 0); y(1) = (-1, 1) при умові

у1 + у2 =2х2 + х+1

В. у12-х-1, у2 = х3; Jехtr = 5/3.

3. J[y(x)]= ( y' 21+ y'22)dх, у(0) = (1, 0);, у(π /2) = (), при умовi

y1'=у2+sinх.

В. у1 = sinх, у2 = соsх- sinх; Jextr =

4. J[y(x)]= (1 у2+у' 12+у' 22)dх, у(0) = (-1, 1); у() = ( + 1)

при умові у'1 + у2' = 4х.

В. у1 = х2 - соsх - sinх, у2 = х2 + соsх + sinх; Jехtr =


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал